
Contemporary encryption key management 
architecture 

The recent avalanche of data breaches attributed to successful access by 
unauthorized people to databases containing confidential information, suggests that 
we need to scrutinize the practices of storing confidential data, review so called “best 
practices” and identify ways to fortify security for such data.

It goes without saying that encryption of data is mandatory for preventing it from 
falling into the wrong hands. However, encryption in general can by no means protect 
the information. To be processed by legitimate users, it needs to be decrypted, and can 
become an easy prey while decrypted. Moreover, even while encrypted, it can still be 
compromised if decryption keys are not well protected. Although the pure statement 
that data is encrypted may formally satisfy the compliance requirements, it cannot be 
considered sufficient for real world data protection.

There are two major ways to improve the security of large sets of data:

1)	 Manage encryption keys with extremely secure methods to prevent them from 
falling into the wrong hands

2)	 Segregate the data into small chunks with separate encryption keys for each 
piece, so that even if a single encryption key gets compromised, the entire data set 
would not.

Here we look at both approaches and their practical implementation using WWPass 
Secure Distributed Data Storage (SDDS).

1. Protection of encryption / decryption keys
No matter what method of data encryption is used, it is necessary to keep encryption 
keys under strict control by authorized users. At the same time, it is often necessary 
to grant multiple users access to the same data, and manage access to it according 
to specific rules, allowing addition, suspension and removal access rights to specific 
users.



This secure multi-user access can be 
arranged by using unique symmetrical 
keys for encryption/decryption of 
the data itself, which themselves are 
kept in an encrypted form. These 
symmetric keys are encrypted by 
public keys of each user and stored 
in a dedicated key database. Before 
access to stored data, each user gets 
authenticated using the WWPass® 
system https://wwpass.com, and 
retrieves their private key from the 
WWPass Secure Distributed Data 
Storage (SDDS). This private key is 
used to decrypt the symmetric key, 
which is then used to decrypt data 
(Figure 1).

Deleting an instance of the 
symmetric key, encrypted by a 
public key of a particular user, 
would disable access to the 
data by that particular user, 
without disturbing access to 
that data by others. Access 
to data can be granted to a 
new user through two-step 
“key ceremony”. Initially, an 
authorized user which has 
access to a symmetric key 
through the ownership of 
its instance encrypted with 
their public key, sends an 
invitation to the other user, 
who in responseprovides the 
requestor their public key.Figure 2. Share data, server-side encryption

Figure 1, Read data, server-side encryption

Contemporary encryption key management architecture 2



The first user decrypts the symmetric key with her private key, encrypts it with public 
key of a new user, and stores the newly created instance of the symmetric key in the 
key database. After that the new user can access data through use of her instance of 
symmetric key.

In corporate environment, if all public keys of employees are stored in corporate user 
database (Active Directory or LDAP, for example), the two-step “key ceremony” can be 
replaced with immediate access authorization. (Figure 2)

2. Data segregation and use of independent encryption keys 
The bulk encryption method used in most PCI-DSS and HIPAA compliant systems, 
relies on a single key. This key is used to encrypt/decrypt the whole disk or database 
table. In reality, this approach provides virtually no protection from targeted attacks, for 
two major reasons: 

1)	 Data is accessed constantly within these systems, and thus it is effectively forces 
system to grant access to it all the time.

2)	 Hackers capable of getting unauthorized access to the bulk data, usually have no 
trouble getting access to single encryption keys while those keys are constantly 
in use; so even if they steal encrypted data, they most likely also steal the single 
encryption key. 

An alternative approach is to use unique encryption keys for each data set to be 
accessed by each particular user. This access does not to be one-to-one – for 
example, certain users may need to have access to multiple data sets, while others 
should only have access to specific records. 

For example – a corporate employee database, where HR managers may need access 
to all employee records, but each employee should have access to their specific 
records. Such an access structure can utilize the aforementioned multiple instances of 
encryption keys, where each record is encrypted with its specific symmetrical key, then 
each symmetrical key is encrypted with public keys of each employee, and also with 
public key of HR manager (this must be implemented at the application level).

Additionally, these keys must not be stored in a single database (or even a few 
databases) as they

Contemporary encryption key management architecture 3



could be effectively stolen alongside the actual data. WWPass solves this problem by 
storing a critical user-specific secret on user’s device (either in the WWPass mobile 
app or on a smartcard). This way to access data in bulk any attacker has to steal these 
secrets from all the user’s devices, and this is enough to make untargeted attacks 
impractical.

Further improvement of security of data can be achieved if the encryption/decryption 
of data is performed on the users terminal (not on a server), and is available only 
during the authenticated session.

3. Client-side encryption
To dramatically reduce the risk of 
compromising an entire data set, 
client-side encryption prevents an 
unauthorized actor from getting 
access to the entire data set. It relies 
on a specific WWPass feature, the 
sitespecific “Client encryption key”. 
Every time user logs in to particular 
site, a symmetric key, specific to this 
user/provider combination, is sent 
from WWPass to the browser.

When a user account is created at 
protected application, the browser 
generates asymmetric keypair, 
encrypts private key with “Client 
encryption key” and sends thus 
obtained public key and encrypted 
private key to the key database. 
(Figure 3)

Figure 3. Creating new user account in Client-side encryption 
architecture

Contemporary encryption key management architecture 4



Then when the user accesses 
a particular record/data set, the 
application server cannot get it in 
plain text. Instead server sends all the 
necessary information to the browser 
(encrypted record data, encrypted 
symmetric key and user’s encrypted 
private key). The browser obtains the 
“Client key” from WWPass, decrypts 
user private key, decrypts safe 
symmetric key and finally decrypts 
record content. (Figure 4)

Client-side encryption features 
ultimate security so that the 
application web service never gets 
access to any unencrypted user data.

4. PassHub – an 
application which implements all these methods
PassHub™ https://passhub.net is a cloud-based password manager for individuals 
and teams utilizing all of the aforementioned methods to handle private information of 
users securely. It uses multi-user key encryption, allowing multiple secure access to 
shared sets of stored usernames/password (called “safes”), and client-side encryption, 
so nobody (including PassHub servers) ever has access to unencrypted information 
except the users themselves.

Figure 4. Reading data in Client-side encryption architecture

Contemporary encryption key management architecture 5


