

WWPass technology in depth

October 1, 2018

WWPass technology in depth

Page 2 of 15

Table of Contents

Overview ...3

WWPass transaction steps ...4

Authentication details: Service Provider / WWPass ..5

Authentication details: User ...7

Token / WWPass ..7

Data Container access ...8

Dispersed data storage ..9

Ticket as a transaction identifier ..9

Token management. Token life-cycle ... 12

WWPass technology in depth

Page 3 of 15

Overview

WWPass may be considered as a Third-party Identity Provider. Other examples of

Third-Party Identity providers include OpenID, SAML, CAS. OAuth in some aspects

may also be considered as a Third-Party Identity provider.

Third Party Identity provider stores (personal) user data and provides access to the

data to external Service Providers (Relying parties)

WWPass differs in the following main aspects:

• it heavily relies on hardware crypto token

• there is no single set of user data, known to Identity Provider and distributed

among Service Providers; instead every pair user/Service Provider has its

own fully isolated data container

• there is no restriction on user data format - particular serialization as well as

data fields is a choice and responsibility of Service Provider, the owner of

these user data. WWPass may be considered as a per-user storage utility for

Service Providers

Another important features of WWPass is token management:

• issuance and revocation of crypto tokens may be done by user alone,

without WWPass active involvement

WWPass technology in depth

Page 4 of 15

WWPass transaction steps

Every user account (keyset) is assigned unique User Identifier (UserID), 128 bit long

random number. UserID is kept in a token memory and may be read only by

WWPass core network

Every Service Provider is assigned unique ServiceProvider Identifier (128 bit long

random number), SpID

1. User hardware crypto token and WWPass are mutually authenticated, UserID

becomes known to WWPass

2. Service provider and WWPass are mutually authenticated, SpID becomes

known to WWPass

3. UserID and SpID pair is used to calculate address of data container

4. Read/Write access

4.1. The content of this data container is sent form WWPass storage to Service

Provider (read operation)

4.2. Alternatively Service Provider can send user data to selected WWPass data

container (write operation)

WWPass technology in depth

Page 5 of 15

Authentication details: Service Provider / WWPass

Service Provider and WWPass mutual authentication uses SSL protocol with both

server-side and client side certificates. Resulting SSL-connection is encrypted,

further data transfer is secured.

To be able to participate WWPass transactions Service Providers should be

registered at WWPass network. During registration Service Provider is assigned new

unique Service Provider identifier (SpID) and unique ServiceProvider human readable

name. The name is usually (but not necessary) based on SP URL. Finally, this

registered Service Provider receives X509 certificate signed by WWPass CA.

WWPass technology in depth

Page 6 of 15

WWPass technology in depth

Page 7 of 15

Authentication details: User

Token / WWPass

Token / WWPass mutual authentication is implemented according to GlobalPlatform

Secure Channel protocol 03. See Secure Channel Protocol 03 GlobalPlatform Card

Specification v2.2 - Amendment D - 1.0 The protocol is based on a preshared secret

key. As a result of mutual authentication new session key is generated which

protects further data exchange.

See also WWPass document "Appendix A. Java Card Token.pdf"

Access code (or PIN, or Password)

Hardware token authentication is WWPass mandatory first factor (something user

has). Service Provider may request two-factor authentication. This time successful

token authentication is followed by manual entry of "Access code" (something user

knows). WWPass implements Secure Remote Password (SRP) protocol. See e.g.

SRP Official site and RFC-2945. In the context of WWPass authentication SRP has

its own peculiarities. SRP starts after token authentication. Hence the user account

is already identified; "username" becomes redundant and a predefined constant

string is used in calculations.

http://www.globalplatform.org/specificationscard.asp
http://www.globalplatform.org/specificationscard.asp
http://srp.stanford.edu/
http://www.ietf.org/rfc/rfc2945.txt

WWPass technology in depth

Page 8 of 15

Data Container access

Data container storage is designed to be secure in many aspects.

• Data is encrypted at rest. Encryption key may be only calculated in presence

of user token

• Data Container identifier (address) cannot be used to identify user or Service

Provider whom this Data Container belongs

• Data Containers are stored geographically dispersed

Data Container address calculation

As a result of Token and Service Provider authentication WWPass gets UserID and

SpID. Data container address is one-way function of (USerID | SpID) concatenation.

To calculate data container address, WWPass uses asymmetric encryption with a

predefined public key. The key was created for this particular purpose as a part of

WWPass technology in depth

Page 9 of 15

public/private key generation. This public key is a lifetime constant of WWPass

service. Private key of the pair is not used at all and may be safely destroyed.

Alternatively Zp encryption (raising p to the power of (UserID|SpID) concatenation)

may be used for one-way address calculation

Data Container encryption

No matter if the Data Container is encrypted by Service Provider or not, it is always

additionally encrypted by WWPass before sending data to the storage subsystem.

WWPass uses another public key belonging to another key pair to encrypt (UserID |

SpID) concatenation. Last 128 bits of the result are used as an AES key to encrypt

the data. When reading data back, same calculations allow to restore encryption

key. It is important to note that data at rest are thus encrypted. The encryption key is

not stored in WWPass on a permanent basis and is only available as a result of

Service Provider and token authentication.

Alternatively this Data Container encryption key may be calculated as a hash of (

UserID | SpID) concatenation.

Dispersed data storage

WWPass keeps Data Containers in the 12-nodes Dispersed data storage (Reed-

Solomon 6-out-of-12). This way WWPass can survive in case of loss or

compromising of less then 6 storage modes. It is important that data is

geographical distributed (all around the Globe)

Alternatively in particular implementation data distribution may be limited by

country/region borders

Alternatively 6-out-of-12 Reed-Solomon distribution may be reduced to e.g. 2-out-of-

3 nodes

Ticket as a transaction identifier

Mutual authentications in pairs (user ⬄ WWPass) and (Service Provider ⬄

WWPass) are not enough to address a data container with user data to the Service

Provider. Since the communication between a Service Provider and a user is a

many-to-many relationship, WWPass needs to identify a particular session between

the user and the Service Provider. Tickets help to solve the task.

WWPass technology in depth

Page 10 of 15

What is a Ticket

The term itself was borrowed from the Kerberos protocol, but the underlying

mechanism is quite different. A Ticket is a small piece of information, circulating

between a user, a Service Provider and WWPass. Its formal representation is:

<spname:>[p:]<nonce>@<issuer>

where

• <spname> is the registered human-readable name of the Service Provider; it

is presented to the user in the consent dialog

• p is optional, when present indicates two-factor authentication (access code

required)

• <nonce> stands for "number used once", random sequence of hex digits

• <issuer> is a WWPass network node where the ticket was created

Example:

example.com:0be4a4c407f021a6e39032755fec65611ed6c758e7ead6309412c0cbb

966fa08bd887c421b3d@WWPass_srv15:16032

Two slightly different schemes are used - "Clockwise" and "Counter-Clockwise".

Counter-Clockwise scheme

The user starts authentication by pressing a button on a client application (e.g. a

web page in a browser). Service Provider connects to WWPass, authenticates itself

and requests a ticket. WWPass generates new ticket with Service Provider name.

WWPass also remembers an association between the ticket and Service Provider

Identifier (SpID). Now Service Provider passes the ticket to the client application. The

application in turn downloads the ticket into the token. Depending on the token

ability to display Service Provider name (e.g. token on a smart phone) the "Consent

dialog" is shown on token screen or on terminal display.

On user confirmation token authenticates at WWPass, establishes ciphered channel

and sends UserID and the ticket. Now WWPass has can address particular

DataContainer and provides access to it to Service Provider. The ticket is user as a

transaction identifier between Service Provider and WWPass in future data

exchange.

WWPass technology in depth

Page 11 of 15

Clockwise scheme

The user starts authentication by pressing a button on a client application (e.g. a

web page in a browser). Service Provider name is downloaded into the token and

user is presented consent dialog (Allow authentication into - Yes/no). If user

confirms, token authenticates to WWPass and sends SP name and UserID. WWPass

generates a ticket with received SP name and remembers the association (ticket -

UserID). Ticket is returned back to the token. Now tokens passes this new ticket to

the Terminal Application, where from the ticket is received by Service Provider.

Service Provider authenticates at WWPass and presents the ticket. WWPass checks

if the SP name in the ticket belongs to the particular Service Provider and allows

read/write access to corresponding Data Container.

WWPass technology in depth

Page 12 of 15

Token management. Token life-cycle

Every user account (keyset) may include a number of tokens with the same UserID.

Each of them provides access to the same data, defined by UserID.

Those tokens constitute a "keyset". User can deactivate any token from this set as

well as to add new token.

To allow mutual authentication to WWPass each token has two life-time constants,

TokenID and TokenSecret. The TokenID is unique throughout WWPass network and

is used as "Key diversification data" according to GlobalPlatform terminology.

TokenSecret is preshared secret used in mutual authentication according

GlobalPlatform Authentication Protocol 03.

Every token has two other parameters, which are common for the keyset - UserID

and UserDataEncryptionKey (See WWPass document "Appendix A. Java Card

Token.pdf").

Blank token

WWPass cryptographic tokens are based on JavaCard microcomputers (see Java

Card Platform Specification) During manufacturing a WWPass application (cardlet)

is downloaded into the JavaCard. At this point it is a "blank WWPass token"

http://www.oracle.com/technetwork/java/javacard/specs-138637.html
http://www.oracle.com/technetwork/java/javacard/specs-138637.html

WWPass technology in depth

Page 13 of 15

Pre-personalization

Next step is "pre-personalization". Blank token is connected to WWPass network,

which allocates and downloads TokenID and TokenSecret into the device. Tokens

are pre-personalized in a secure "factory" environment.

Personalization

Tokens with UserID and UserDataEncryptionkey are "personalized".

UserDataEncryptionKey is used by some applications for cryptographic operations

on user Terminal.

Pre-personalized tokens are delivered to end-users. Further events depend on

whether it is the first token in a keyset or the token will be added to already existing

keyset. First case - when activating a new keyset, pre-personalized token connects

to the WWPass network via user terminal. WWPass allocates new unique UserID

and sets corresponding constant in the token memory. Token generates a random

128 bit number - UserDataEncryptionkey. Its value is not known to WWPass

network.

WWPass technology in depth

Page 14 of 15

Adding a token to already existing keyset involves one already personalized token

and another token in pre-personalized state. The procedure is coordinated by

WWPass network.

First personalized token is connected to WWPass via user terminal. After mutual

authentication the token:

• WWPass generates random symmetric encryption key and sends it to the

token

• token encrypts (UserID, UserDataEncryptionKey) bundle with the received

key

• token outputs the result (bundle) to the UserTerminal memory for a

temporary storage.

Now user is advised to disconnect personalized token and connect new token (

which is in prepersonalized state);

After mutual authentication at WWPass network the token

• downloads the encrypted (UserID, UserDataEncryptionKey) bundle from User

Terminal memory

• gets (via encrypted channel) the symmetric key, kept in WWPass

WWPass technology in depth

Page 15 of 15

• decrypts the (UserID,UserDataEncryptionKey) pair and stores values in its

memory

