a2 United States Patent
Shablygin et al.

US009177169B2

US 9,177,169 B2
Nov. 3, 2015

(10) Patent No.:
(45) Date of Patent:

(54) SECURE DIGITAL STORAGE

(71) Applicant: WWPass Corporation, Manchester, NH
(US)

(72) Inventors: Eugene Shablygin, Manchester, NH
(US); Eric Scace, Manchester, NH (US);
Mikhail Vysogrets, Manchester, NH
(US); Vasily Zakharov, Manchester, NH
(US); Oleg Bolotov, Manchester, NH
(US)

(73) Assignee: WWPass Corporation, Manchester, NH
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 95 days.

(21) Appl. No.: 13/763,998

(22) Filed: Feb. 11, 2013
(65) Prior Publication Data
US 2013/0212704 A1l Aug. 15,2013

Related U.S. Application Data
(60) Provisional application No. 61/598,011, filed on Feb.

13, 2012.
(51) Int.CL

HO4L 29/00 (2006.01)

GOGF 21/62 (2013.01)
(52) US.CL

CPC ... GOGF 21/6218 (2013.01); GOGF 21/6272

(2013.01); GO6F 2221/2107 (2013.01)

31
\ Prior to acceptance of the data for storage,
the user is authenticated.

\

32
_ Prior to acceptance of the data for storage,
the service provider is authenticated.

33 A 4
x Prior to acceptance of the data for storage,
the data is encrypted.

Y

34 \ Prior to acceptance of the data for storage,
the encrypted data is further obfuscated and
fragmented.

35 X ¥

The fragments are dispersed for storage.

(58) Field of Classification Search

CPC GOGF 21/62; GOGF 15/16; GOGF 17/30;
HO4L 1/00
USPC i 726/28

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

8,219,821 B2* 7/2012 Zimmelsetal. 713/181
8,312,043 B2* 11/2012 VanRieletal. 707/783

2004/0107342 Al 6/2004 Pham et al.

2006/0277413 Al 12/2006 Drews

2008/0083036 Al 4/2008 Ozzie et al.

2008/0147821 Al 6/2008 Dietrich et al.

2010/0199089 Al 8/2010 Vysogorets et al.

2010/0312700 Al 12/2010 Coulter et al.

2013/0086141 Al* 4/2013 Saldhana 709/203

OTHER PUBLICATIONS

International Search Report and Written Opinion for International
Application No. PCT/US13/25578 dated Apr. 23, 2013.

* cited by examiner

Primary Examiner — Brandon Hoffman
Assistant Examiner — Michael D Anderson
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

Systems and methods for activating a token to enable a user to
enter a transaction based on information received from a
recovery key and a passcode are described herein.

24 Claims, 40 Drawing Sheets

Prior to retrieval of the data for storage, the
user is authenticaled.

A 4

37
\ Prior to retrieval of the data for storage, the
service provider is authenticated.

38 Y

\ Upon authentication of the user and the
service provider, a sufficient subset of
fragments is retrieved and the encrypted data
determined therefrom.

39 \ Y

The encrypted data is delivered for
decryption.

U.S. Patent

Nov. 3, 2015 Sheet 1 of 40

US 9,177,169 B2

Prior to acceptance of the data for storage,
the user is authenticated.

v

Prior to acceptance of the data for storage,
the service provider is authenticated.

v

Prior to acceptance of the data for storage,
the data is encrypted.

!

Prior to acceptance of the data for storage,
the encrypted data is further obfuscated and

fragmented.

The fragments are dispersed for storage.

Fig. 1A

U.S. Patent Nov. 3, 2015 Sheet 2 of 40

US 9,177,169 B2

36'\

Prior to retrieval of the data for storage, the
user is authenticated.

v

37\

Prior to retrieval of the data for storage, the
service provider is authenticated.

v

Upon authentication of the user and the
service provider, a sufficient subset of
fragments is retrieved and the encrypted data
determined therefrom.

/

39\

The encrypted data is delivered for
decryption.

Fig. 18

U.S. Patent Nov. 3, 2015 Sheet 3 of 40

US 9,177,169 B2

Service provider
20 '\ Token
21
.\ 22] Service provider
D
User
26
-\ Token
28 | User
D \L

14\

Data container identifier:
user 1D + service provider

L Go—r

10 \ Data container

Data storage locations

Fig. 24

U.S. Patent Nov. 3, 2015 Sheet 4 of 40 US 9,177,169 B2

Service provider

20 \ ' Token
21
\

=] Service provider
m: 13579246

User

26 \ Token
27
AN

28 \ User 1n:

33445566 J J{
Y

Data container identifier:
1\ 3344556613579246

—

10 -\ Data container

et
//;”I
2y
f”///,'
EAR Al
AN
PRl P ad s
- - e 7/’
C OO O yzc=z2esy
Za=T Lt
R 4
S
P e
d
12 C O Jf=g-"L-
-ii -

Data storage locations

Fig. 28

U.S. Patent Nov. 3, 2015

/Process that uses the
authentication & dispersed data storage system:

46
\ Receive unencrypted data

48\ *

Encrypt data

~

50

\ Send the encrypted data to the
authentication & dispersed data
storage system

Sheet 5 of 40 US 9,177,169 B2

/Authentication & dispersed data storage

Fig. 3a

systlem:

52
\ Receive encrypted data from the

Process.

54 '\ Obfuscate and fragment the
encrypted data into multiple

fragments with the [ragments

providing redundancy.

Dctermine data storage locations
and points within each location to
35 \ which to disperse fragments, based

on a data container identifier
generated using a combination of
the user 1 and service provider D,
and optionally other factors.

v

56 \ Store fragments in dispersed data
storage locations.

US 9,177,169 B2

Sheet 6 of 40

Nov. 3, 2015

U.S. Patent

~152% l Unencrypted data

7085

58
\|+1~81

a

at

Y Encrypted d

; .

\

r

ncrypted and obfuscated data fragments:

l-——--————————)

62\

e o e s s o o e o _}

o e e o e

R ~t
_Illlllllllllllllﬂwﬂl,iwmwd“\ ..VO
ey YV ‘ Y

L

%
W

\w%éﬂwm

Lo T T T

Fig. 3B

U.S. Patent

Nov. 3, 2015 Sheet 7 of 40

(D

65\

ispersed data storage system:

Identify fragments for retrieval, based
on a data container identifier
generated using a combination of the
user ID and service provider 1D, and
optionally other factors.

!

66\

Retrieve fragments from at least some
of the dispersed data storage locations
identified based on the data container

identifier.

68\

Reassemble retrieved fragments to
generate encrypted data.

-

Process that uses the
dispersed data storage system

69

Y

Receive encrypted data.

Y

AN
70\

Decrypt data.

Fig. 4A

US 9,177,169 B2

US 9,177,169 B2

Sheet 8 of 40

Nov. 3, 2015

U.S. Patent

Encrypted and obfuscated data fragments:

Encrypted data

79
\[n«-ez 7-556-1523| Unencrypted data

Fig. 4B

U.S. Patent Nov. 3, 2015 Sheet 9 of 40 US 9,177,169 B2

88 X User token
86 ™ User

D
Service provider A: Service provider B
34a ‘ic .
™~ SE‘:E cheD 84b ~_ Service
provider iD A provider ID B

v ¥ 2 2

% Data container identifier A : $9b Data container identifier B;
a \ user ID + service provider 1D \ user ID + service provider ID

A §— 5 Go—rx

1>~)

80a \ Data container 's 80b \ Data container

U.S. Patent Nov. 3, 2015 Sheet 10 of 40 US 9,177,169 B2

User token

96 ™ User ID
44444
Service provider A: Service provider B
94a =~ Servm? provider 94b ~_{ service provider
ESPELY ID B: 67890
9. Data container identifier A : 9b Data container identifier B:
728 ™\ user b + service provider Ip A N\ user ip + service provider 1D B

B=—r 1444412345 B=—r 1444467390

9la \ Data container A 91b \ Data container B

Fig. 58

U.S. Patent Nov. 3, 2015 Sheet 11 of 40 US 9,177,169 B2

102 | . .
G Service provider computer system network

108 \D 104 \

7
112 '\

Token
interface

l

Computer

108 \@ > processor

unit

N

110 \I—_[——_]__l (10 \D

108 \D -

112 i!

Token
interface

114 Internet

102 | . .
\ Service provider computer system network

108 ~_ 104
D Computer
108 \D - | processor

unit

Token
interface

data storage management

4 system
y
201
] 203

202 \i 204 | Authentication and dispersed

U.S. Patent Nov. 3, 2015 Sheet 12 of 40 US 9,177,169 B2

27
\ token
A
2 \J
220 e 222 ~

| User terminal /

o

Service provider

A

agent token interface

i Service provider Dispersed data storage | !
i front end management system '
| [} ;
208 <\ ! |
i User 212 Key :
! front end < »! management system |
b e e o e e e m mmm e)
214

Fig. 7

U.S. Patent Nov. 3, 2015 Sheet 13 of 40 US 9,177,169 B2

310

\ Secure element Interfaces:

[—frmqip}imccsmﬁ—] 180-7816 and/or
oken 1D - > conlactless and/or [l
[Token secret] UsB and/or
SWP
[User ID])
1
[Data encryption key] 330 \‘: *************** y ~~~~~~~~~~~~~~~ '
« Communications electronics j<=~3

to card reader / computer

Fig. 8a

U.S. Patent Nov. 3, 2015 Sheet 14 of 40 US 9,177,169 B2

-

Fig. 8C Fig. 8E

U.S. Patent Nov. 3, 2015 Sheet 15 of 40 US 9,177,169 B2
to/from
service provider
front end 205
243
208 ~

User front end

245 N ommmmmmTmmmmm e \
239 N\ _ R
to/from : 3 [Ticket] E b to/from
user terminal / : [User 1] ; dispersed data storage
token interface 222 ; E management system 210

: [Data encryption] :
: kev ;

to/from
user
front end 208

249

to/from
service provider
agents 220

Service provider front end

to/from
dispersed data storage
management system 210

Fig. 10

U.S. Patent

208\

Nov. 3, 2015 Sheet 16 of 40

User
front end

Service provider
front end

F

212
™

US 9,177,169 B2

Key management
system

242 Y.
\-l Data collector(s)
i

Fig, 11

U.S. Patent Nov. 3, 2015 Sheet 17 of 40 US 9,177,169 B2

/ 210
_________________ 220 205 /

\ Userloken | 779 208 / /

e rmm e t '
I / / U S AU (S , o Dispersed |
ORISR, A RPN - oo Service P Service {1 datastorage |
{ User terminal/ | | User {1 provider | | provider | | management
' token interface E ! front end b agent o front end P system E
L r ________ [PSR 2— ________ | P } ________ b | SR 1! ________ b | AU r ________

i

1 701 token 1D ! 1 i i

| - i j |

: ! 703 READ(data conftainer identifier) z !

j i >

! I 705 token secret key(s), token status !

: g : . ;

I 707 messages to complete mutual authentication ; ;

i ' i | [

L' 709 user 1D, data gxcryption key : { :

! | i l n

1 | : |

245 oo

l \i Ticket, user D, E } | |

: i data encryption key | ! ; :

bo700ticket 1 ; ! !

» | : |

713 ticket ! i i

! > i i

i i 715 ticket § i

! - i

{717 ticket | :

n

i i

| |

[

|

[

ontainer identifier)

721 READ(data

Y

723 data container

C
|
|
1
i
|

725 data container !
!

A

Fig. 124

U.S. Patent Nov. 3, 2015 Sheet 18 of 40 US 9,177,169 B2

\ Usertoken | 277 208 / / » PR S

748 confirmation of ticket receipt

i
|
>

750 GetDala(ticket)

I I ———————— / , R S .+ Dispersed |
R, AR AR S oo Service b Service ¢ 1 datastorage |
i User terminal/ f E User i : provider - provider ! | management !
' token interface 1 ! front end o agent o front end o system :
b cmc e pm e mam e bovmm o v L Gy b [,
,f f 1 z f
I 730 HTTP request I ! !
i ' > , ! x
| : {732 ticket request | !
]] ! > f
| | i S R]
]] | - i |
! : ! ! Ticket, .
|] i i bookstore:687@spfe.net:4567 i |
i | P e e |
! f ! 734 ticket ! !
-
| 736 ticket | { !
et} x ‘ | |
o | | | |
I Token displays “bookstore™. | | i i !
E. User presses consent button. i ! : | !
-------- e ' i |
{738 messages to complete mutual authentication ! !
] i | | |
I 740 ticket { ! !]
! >, ' i |
{ i 742 ticket, user 1D i i
| ’ - !
§ : 744 confirmation of ticket receipt :
| - i
I 746 confirmation of ticket receipt ;
- |
i
i
|
s
|

Y

752 READ(dat:

o

container identifier)
! St
I 754 data container !
- 2

756 data container ! i
l { {

1
|
!
| |
1 !
{ |
] i
| i
| i
| i
|
}

Fig. 128

U.S. Patent Nov. 3, 2015 Sheet 19 of 40 US 9,177,169 B2

27
/ 210
o 220 205
i Usertoken | 222 208 / / pmmmmmeeb ,
I I """""" I/ / [NV S SN SN , 1 Dispersed |
PR, - Y S oo Service Lo Service i1 data storage E
\ User terminal/ | | User ¢ 1 provider) i provider ! | management |
! token interface i ! front end E E agent t 1 frontend ! | system !
fmmmmmmes preseees femmmmme- poommees bommnees 2 e P) il b temmemees Foooeee
: 730 HTIP request } §
-~ |
]

1
i Ticket, bookstore:x (@ spfe.net:4567 i

734 licket
736a licket.sp
__________________________ ;
E Token displays “bookstore™ i :
| Userprovses cansent button, {

738 messages to complete mutual authentication
M

740a ticket. T] |
- i

: 742a ticket.T

f

?

i ’ ; -

| |] P — e S taindadeded :

! : ! | Data container identifier |

! ! } i calculation !

! | 744 confirmation of ticket receipt !

i 1 1

{746 confirmation of ticket receipt | !
_

! 1 {

I 748 confirmation of ticket receipt »: !

2 { | 750a GetData() |

i i ' o

: : : 752 READ(data container identifier)

i i f !

! f ! ! 754 data container !
|] l e I
2 : 1756 data container | {
{ } i

:_< H

Fig. 12¢

U.S. Patent Nov. 3, 2015 Sheet 20 of 40 US 9,177,169 B2

732 ticket request

27
/ 210
g 220 205

i Usertoken 292 208 / R SR
_______ I"""" oemmmecdeeicecfeoo 1 Dispersed |
RRRNN AU— R AR Lo Service P Service i1 data storage |
+ User terminal/ : E User : : provider Lo provider | | management !
i token interface ; | front end P agent Vol front end Lo system ‘
:’ ________ b e e [ooreemm e .]‘ | S - e + | SRR - [

I

I 730 ITTP request \ !

L N :

]

]
i
i
i
i N 1
; Ticket, !
! i bookstore:687@spfe.net:4567 i
Y e B e Lt o i
| 4734 ticket !
I 736 ticket | :
1l T 1 !
b | | |
! Token displays “bookstore™. 1 | I
E_ User presses consent button. E : : :
-------- T e ‘ i
I 738 messages o complete mutual authentication :
lH
] ! {
740 ticket ! ! I
>, ! i
i 742b ticket i
! -

;474413 confirmation of ticket receipt, service provider 1D

746b confirmation of ticket receipt, service provider b

A

|

748 confirmation of ticket receipt »}
750 GetData(ticket)

I

749 data container identifier, ticket

Y

i
i
i
747 data container identifier |

\

752 READ(dat

o
(]

ontainer identifier)

754 data container

”
|
]
|
|
1
|
|

756 data container

A

Fig. 12p

U.S. Patent Nov. 3, 2015 Sheet 21 of 40 US 9,177,169 B2

212b
™ Key management web service
(dedicated service provider)

* 212a
212¢ '\

\ Key management core] ‘ .]
(dedicated service provider front end) -1 Smart card personalization equipment

'

2124
™ Operator console

Fig. 13

U.S. Patent Nov. 3, 2015 Sheet 22 of 40 US 9,177,169 B2

945 ticket

|
|
‘ ?
950 user b, data encryption key, old token 1D, master token 1 |

955 create new token pair; deactivate old token pair
i

260
210
pmmmmm s 221b 212¢ /

! Master token ! 929 208 / / R AN
""""" I"""" / e . _______) Dispersed !
PR A R A o Key P Key i datastorage |
} User terminal/ | | User { | management | | management | | management |
' token interface + ! front end ¢ ' webservice | ! core P system 0
[A Ve mmmmmpmmcaen e e e ' S, ' b mmc el

]] ‘; i]

£ 905 master token ID | : : ;

: ! 910 READ(data conltainer identifier) ! !

. | >

: b 915 token secret key(s), token status !

i [(

920 messages to complete mutual authentication : !

| ' : |]

? 925 user D, data encryption key, old token D : ;

! [| [|

: i ! | |

927 g Hemmms e e ! !

x 1 Ticket, user 1D, i : : !

: ! data encryption key, ! : : §

i i- old token ID, master token1p | i i f

I lemmc—sceme————————————— O [I

t 930 ticket : ! ! !

g { { ! {

l . i [I

i1 935 ticket { t {

i i [|

I (. f |

I i 940 ticket f !

i - i

[|

| i

!

|

!

!

|

I

|

|

960 success

965 success

A

U.S. Patent Nov. 3, 2015 Sheet 23 of 40 US 9,177,169 B2

Blank / Dinabled foksn
3

inmrtive Token, 304

Samsascbivate i ok, BY8

U.S. Patent Nov. 3, 2015 Sheet 24 of 40 US 9,177,169 B2

Autharttication service
20

§ Auihentiosls

Prrovdicde
dmfication of

Phogusst b

fnotor
mtherdinaion,
326

Token
management
segvice, 324

%

Frovie

foken, 332

§ activale
, . token, 338
Lser, 328 i}

Tokan o be
activated, 398

FIG. 16

US 9,177,169 B2

Sheet 25 of 40

Nov. 3, 2015

U.S. Patent

PUHADY LONEDEUBEY

TOE THURBATDE USHD)
Sunwapu st sueBeusy
ey O3 ofusseu puBy

Lb Ol

S0y

aonans awelauens usyo]

BGY HONRAROR N0y
Bupunte snen o shessouw peg

+

A

oot sullgy
ooy Bugendrn Ag Wi uRsalyY

4

wae enobeser Auea

U wogRAgR
LANOT I MONEH SANEOUY

BGT RpOossEd By

oy trasy pany opoossed menbey

¥HY
56

‘Brrmsed 10 wenhel aunwy

6 HARNG) SR REDGUBLNY

ST DT BARDE KSR

YL BN
ARG O umiesead senbey

4

4

D DRMBGRT UBNDL SARGEY IO
sogmussed jof 1erdss aneney

et UORRIILSUING
30 Yarhul SABORY

SEE R ARDE Uy 1Senbay

BEE RUAET HONBOIUBING O
SOGEMRIRENT J0) serdvd pusg

4

S
SHMIBARE J03 1anbvs 2AeUey

U.S. Patent Nov. 3, 2015 Sheet 26 of 40 US 9,177,169 B2

FIG. 18

U.S. Patent Nov. 3, 2015 Sheet 27 of 40 US 9,177,169 B2

FiG. 19

U.S. Patent Nov. 3, 2015 Sheet 28 of 40 US 9,177,169 B2

FIG. 20

U.S. Patent Nov. 3, 2015 Sheet 29 of 40 US 9,177,169 B2

FIG. 21

U.S. Patent Nov. 3, 2015 Sheet 30 of 40 US 9,177,169 B2

Linet rogisas geneistion of
vapiaament oken, 434

o

488

E

Heoahee mguntd B rani
ey, A0

N

M r.N
0 pressed T
: Koy, 40
J Prosent meoovery Key, 405

w—-&-ﬂ Autrerdiosts fe GORETY k»”:,'y‘ 2 i

Prompt aser i gresend Mank tokes,

J; ; &7

Pronent Wark token, A8 et J‘

hosd tmay 1), olan 10
Serphitn Beve ondd bhank 1ok
fedeze

Rime fokory W a8 sy

L

Ao Fremert penenstion of insntive token tn
. ok sy, 41

447 1

sy

o

heny Sk, 498

Panuest user i peovide inantive
dedkanry et gusnnnade; A8

i Presers inautive token
: passcody, 32

iy inactive ke and eestods,
442

-

i Bhars foken 88 40

sk

i o Regot qensretion of notve When o
; : foken managiment servha 428

Endiontion hat ok s

Report foken is roady Bruse
k331 oy Ror uss, A%

e, 4

Authmntication service
Token management User Authantication serice

SEIVICEH ?KS , 22

US 9,177,169 B2

Sheet 31 of 40

Nov. 3, 2015

U.S. Patent

HOMAISE DONRDAUBENY

S
SRR OF BONPHEDEE PRIOHY

B LORETRUBYING

€ ol

et

SRS
Buelvunus
SRR

L65 BOERP O} USNO0) 10)8Y

B WU
0} BUAISE UORBILIBNE
G UGREDIDAY (RISE pul wesp
O hg 30 UONEER SNEeY

A

FuBeREnE podng

res eponesed Ausa
o Ao Amanows seoguogny §

ape apoossed
JEas pul Aas Apsgs
peisad o saey menhey

rs

&

nog spossed
s pue Aoy AIeA0Ded NS Gd

.

e ushEbusIgng
BEDE) OMG G 1enhE SADLEy

ai¢ e
0 SLENDY B IBSIT JO 18N SIHAtY

e e
¥ BIGRSH T SN oSN

g U
IO Doy 203 asendas puny

4

288 R
B aigpey 0) menhsi Ay

U.S. Patent Nov. 3, 2015 Sheet 32 of 40 US 9,177,169 B2

Fyrtherdication
service
4585

Token
management
sorvics, 477

-

Hotive foken,
474

Recovary key,
478

.

US 9,177,169 B2

Sheet 33 of 40

Nov. 3, 2015

U.S. Patent

G¢ 9ld

\ ERIINEES
80INI8S _ 081 wawebeuepy
uopedRUBLYINY _ uaxo |
|
]
" 26 epoossed Mau aA1@08Y |
]
|
]
! T6% 18sn
_ o1 opoossed mau spiAoid
]
! A
]
Bev m 067 opoassed mapN a1eai)
USYOL SAOY SJEONUSUINY | ¢
88Y UsMO | SAOY Spiroid

8% uano aAldY
10 uoleSSaId 1Sonbay

4

a8y
Aoy Alenooay sieonuayiny

¥ Aoy Aionooau
Jo uoneuasaud 1senbay

! GOy A0 A18A020Y opinoid

£8¥% uan0l
BAlOE pue Aoy Aleaooal

T18% apoossed jsenbau
pug 991A1es Juswabeuew
uoneJosal 0) aebineN

S9SN B JO uonedRusyIne
10} 1sonbal pussg

A

Z8%
apoossed

10} 1S8nbal an@day

US 9,177,169 B2

Sheet 34 of 40

Nov. 3, 2015

U.S. Patent

Asuiony

soueINsU|

2

8092 Dy

K>

jueg

909z —

9¢ Old

$09Z

2092

US 9,177,169 B2

Sheet 35 of 40

Nov. 3, 2015

U.S. Patent

L¢ Old

9L/¢ w» 19pPjO] jeuosiad

A
/

9L/Z w 19pjod |pUOSIOG /

ZZlZ —» uoneiodiodui Jo S8oiy

v12Z2 » HneA-3 Asuiopz j

Q2.2 v S3J0N |euosiod

g1/Z w lUaWNoO(] ISNIj

R

7
/

9212 ZL/Z —» UNBA-3 soueInsuj _

oLz WenTueg <

.

80/Z -» A101081(J00OY

/'

90.z

v0.2 —

z0iz

US 9,177,169 B2

Sheet 36 of 40

Nov. 3, 2015

U.S. Patent

8C’

oige
(payesin Josn)
Jaurejuo) Aiojsug

Old

808¢
(3ineA-3)
Jsuteuon Aiojyoaiiq

¥08¢

(1004)
Jaueuo) Aloloang

908¢
lauigjuog jnea-4

208¢
Jauieluon Josn

US 9,177,169 B2

Sheet 37 of 40

Nov. 3, 2015

U.S. Patent

6¢ Ol

SJUBUOY) Bfi4

S9INQUIY 9l

— s
716¢ 7 al
Joureluo i

olec
(1004 3ineA-3)
Jeuieyo) Aioaag

sal

N

sal %

cl6e
(jeuosiad)

Jaueluon Aioyoaug Al\

806¢

(yo0y)
Jaureiuon Aiopaeliq

H
H
i
H
i
i
A} Y

S HneA

Qi Aoyeaqg 100y

senijigeden
S}nNeA® J0 1817 oWeN JopUap
906¢ $06¢
Jauieluon) JOIBASIUILPY J9UIBIUOD NBA-T

(dind) @i +asn oland

c06c
JBUIBIUOD J9sN

US 9,177,169 B2

Sheet 38 of 40

Nov. 3, 2015

U.S. Patent

£00€ —|

z00€ 1

0€ Old

8ZIG {810 WNWIXBW

sejjljiqede)

SNIEIS nNeA-3 H.
S9|l4 JO JaqUINN WNWIXep |

9ZIS Oji4 Wnwixen ||

QWEN JOpUsSA

JBUIBIUON) }NeA®

000¢ alds + al Unea-3

US 9,177,169 B2

Sheet 39 of 40

Nov. 3, 2015

U.S. Patent

L€ Ol

STTE 9TTE PITE A%
qQid 2ZIg adA aweN

/ sjusu0) Aiooeaq

SWi] PaIPON ISET [goLe
awil uoneaid - goLe
seInquiy Alojoaig

pore

pesy cdind
JBUMO Ldind
1817 {0JIUOY) $S300Y

Z0LE — ’ Jauteiuon Alojpsaq
-

oolg

US 9,177,169 B2

Sheet 40 of 40

Nov. 3, 2015

U.S. Patent

912€ -/

oLze

coce —

¢¢c Old

(s1uuon ‘Asy sji4)oul

SjuBUOY Bii

Swil] PAOYIPO iseT

swli| uonealin

SOINQURY Ojid

(hey oji4 ‘Aeyi g Josn)oug | pesy | zdind

(Aeyt ojid ‘Aoyt | sosn)oug | JeumQ | LAINd

- 80ZE - 902¢
1S17 |OJJUOD) $S820Y

N

Y

JBuUIRIUOD 914

[~ plze

A4

— ¥0c¢e

US 9,177,169 B2

1
SECURE DIGITAL STORAGE

CROSS-REFERENCE TO RELATED
APPLICATION

Under 35 U.S.C. §119, this application claims the benefit
of prior U.S. provisional application 61/598,011, filed Feb.
13, 2012, which is incorporated in its entirety herein by ref-
erence.

FIELD

Computer systems and methods, computer program prod-
ucts and more particularly electronic commerce and authen-
tication conducted via computer networks are described
herein.

BACKGROUND

Authentication is the process of validating a set of creden-
tials that are provided by a party (e.g., a natural person, a
program running on a computer system, or other automaton)
to a transaction or on behalf of such a party. Authentication is
accomplished by verifying, through a challenge/response
operation using various authentication protocols, one or more
of: something a party knows; something a party possesses;
some characteristic about the party; or having one or more
other authenticated parties vouch for the party being authen-
ticated. For example, verification of something that a party
knows may be accomplished through a shared secret, such as
a party’s password, or through something that is known only
to a particular party, such as a party’s cryptographic key.
Verification of something that a party possesses may employ
a smartcard or other form of hardware token. Verification of a
human party characteristic might employ a biometric input
such as a fingerprint or retinal map.

The role of the parties to a transaction may be characterized
as user and service provider. The service provider delivers to
the user via computer systems and networks some form or
combination of information, information access, or access to
resources. The service provider may also or instead perform
some other function or service for or on behalf of the user.

SUMMARY

In some aspects, a computer-implemented method can
include generating a recovery key identifiable by a unique
token identifier by storing a user identifier and one or more
encryption keys in a location associated with the recovery key
and storing an enabled state associated with the token iden-
tifier of the recovery key. The method can also include gen-
erating a passcode associated with the user, providing the
passcode and the recovery key to the user, and activating a
token to enable a user to enter a transaction, the activation
being based on information received from the recovery key
and the passcode received from the user.

Embodiments can include one or more of the following.

Storing the user identifier and the one or more encryption
keys in a location associated with the recovery key can
include storing the user identifier and the one or more encryp-
tion keys on the recovery key.

Storing the user identifier and the one or more encryption
keys in a location associated with the recovery key can
include storing the user identifier and the one or more encryp-
tion keys in a data container identified by an access code that
is based in part on a the token identifier of the recovery key.

10

15

20

25

30

35

40

45

50

55

60

65

2

Activating the token can include associating an active state
with a token identifier of the active token.

Storing the enabled state associated with the token identi-
fier of the recovery key can include storing the enabled state
in a look-up table indexed by token identifiers.

Storing an active state associated the token identifier of the
active token can include storing the active state in the look-up
table.

Storing the enabled state associated with the token identi-
fier of the recovery key can include storing the enabled state
in a data container accessible based on an access code gener-
ated based on a combination of the token identifier of the
recovery key and a service provider identifier.

Storing an active state associated the token identifier of the
active token can include storing the active state in a data
container accessible based on an access code generated based
on a combination of the token identifier of the active token
and the service provider identifier.

Activating the token can include receiving a request to
generate an active token, receiving the user identifier and the
one or more encryption keys from the recovery key, and
storing the received user identifier and one or more encryp-
tion keys on the token.

Activating the token further can include associating an
active state with a token identifier of the active token.

The method can also include receiving an encryption algo-
rithm identifier from the recovery key and storing the received
encryption algorithm identifier on the token.

Receiving the user identifier and the one or more encryp-
tion keys from the recovery key can include storing the user
identifier and the one or more encryption keys in a storage
location accessible based on a combination of a service pro-
vider identifier and a code.

The method can also include receiving the code from the
user and accessing the stored user identifier and one or more
encryption keys from the storage location.

Activating the token can include requesting the passcode
from a user, in response to the request, receiving the passcode
from a user, and upon verification of the passcode, activating
the token by updating state information associated with the
token.

The enabled state can prevent the user of the recovery key
for performing transactions other than those associated with
token and passcode management.

The above and other features of the present invention will
be better understood from the following detailed description
of'the preferred embodiments of the invention that is provided
in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate preferred embodi-
ments of the invention, as well as other information pertinent
to the disclosure, in which:

FIG. 1A depicts a process for storing data in a dispersed,
secure manner and FIG. 1B shows a process for retrieving
data in a dispersed, secure manner.

FIG. 2A depicts an overview of a data flow for generating
an access code for accessing data stored in a data container.

FIG. 2B shows an example of a data flow for generating an
access code for accessing data stored in a data container.

FIG. 3A shows an exemplary fragmentation and dispersion
process.

FIG. 3B shows a graphically depicted example of the frag-
mentation and dispersion process of FIG. 3A.

FIG. 4A shows an exemplary data assembly and decryption
process.

US 9,177,169 B2

3

FIG. 4B shows a graphically depicted example of the data
assembly and decryption process of FIG. 4A.

FIG. 5A shows a system for providing secure access to data
stored in a user’s multiple, different data containers.

FIG. 5B shows a particular example of providing secure
access to data stored in a user’s multiple, difterent data con-
tainers.

FIG. 6 is a stylized overview of a system of interconnected
computer networks, one of which includes an authentication
and dispersed data storage (A&DDS) system;

FIG. 7 illustrates the A&DDS system of FIG. 6 in more
detail along with its connections for interfacing with a service
provider agent, user terminal and dispersed data storage sys-
tem;

FIG. 8A is a block diagram of a token for use in the system
of FIG. 7 and FIGS. 8B-8E illustrate various embodiments of
tokens;

FIG. 9 illustrates the user front end component of the
A&DDS management system with its main links to other
parts of the system;

FIG. 10 illustrates the service provider front end compo-
nent of the A&DDS management system with its main links
to other parts of the system;

FIG. 11 illustrates the dispersed data storage system of the
A&DDS management system of FIG. 7 in more detail with its
connections to various other components of the system;

FIG. 12A is a message sequence chart for user authentica-
tion at a service provider and data retrieval according to a first
embodiment of the present invention;

FIG. 12B is a message sequence chart for user authentica-
tion at a service provider and data retrieval according to a
second embodiment of the present invention;

FIGS. 12C and 12D are alternative embodiments of the
message sequence chart of FIG. 12B;

FIG. 13 illustrates the components of an embodiment of a
key management system; and

FIG. 14 is message sequence chart illustrating a method of
generating and issuing a new token pair for replacement of a
token.

FIG. 15 shows an exemplary token lifecycle.

FIG. 16 shows an exemplary token activation process.

FIG. 17 shows an exemplary token activation process.

FIG. 18 shows an exemplary user interface for token man-
agement.

FIG. 19 shows an exemplary user interface for token acti-
vation.

FIG. 20 shows an exemplary user interface for passcode
entry.

FIG. 21 shows an exemplary user interface for communi-
cation of token activation.

FIG. 22 shows an exemplary token replacement process.

FIG. 23 shows an exemplary token disablement process.

FIG. 24 shows an exemplary passcode restoration process.

FIG. 25 shows an exemplary passcode restoration process.

FIG. 26 shows providing multiple vaults to users on behalf
of multiple vendors.

FIG. 27 shows a user interface for presenting multiple
e-vaults accounts to user in a unified interface.

FIG. 28 shows data containers stored in an A&DDS Sys-
tem and the relationship between data containers.

FIG. 29 shows data containers used to administer the
e-vaults.

FIG. 30 shows an implementation of an e-vault container.

FIG. 31 shows an implementation of a directory container.

FIG. 32 shows an implementation of a file container.

10

15

20

25

30

35

40

45

50

55

60

65

4
DETAILED DESCRIPTION

In some aspects of the systems and methods for authenti-
cation described herein, the user has a token that is unique but
carries no personal information. The token can be a USB
dongle or NFC-capable SmartCard. An application or service
provider also has a token that is unique and registered with the
authentication system. A transaction only takes place when
both parties (e.g., the user and service provider) have authen-
ticated with the authentication system using their tokens.
Additional authentication factors can also be supported such
as two factor authentication based on a token and passcode or
three factor authentication based on a token, passcode, and
biometric information. In some examples, a party can include
a natural person, a program running on a computer system,
and/or other automaton. In some additional examples, a party
can also include any third-party service or application used by
a party to create, store, retrieve, modify, delete, or otherwise
use the data.

As described herein, user authentication can include
authentication of the system to the user. Service provider
authentication can include authentication of the system to the
service provider. Neither party can complete authentication
with a false system attempting to misrepresent itself as the
true system.

In some examples, system authentication occurs prior to
user authentication, such that if a party attempts authentica-
tion with a false system, the authentication procedure fails
before that party reveals information critical to certifying the
party’s authenticity. A false system therefore cannot obtain
information from the true party that would enable a false party
to misrepresent itself as the user or as the service provider.

FIG. 1A depicts an overview of a process for storing data
(e.g., storing previously un-stored data and/or modifying pre-
viously-stored data) in a dispersed, secure manner and FIG.
1B shows a process for retrieving data (e.g., retrieving data
can includes deleting or rendering inaccessible to any party,
including the storage system itself the previously-stored data
from the storage system and/or rendering the previously-
stored data otherwise inaccessible) in a dispersed, secure
manner. The storage of data in a secure manner is tightly
coupled with authentication of the parties that store the data.
For example, to ensure the authenticity of the parties and
enable secure storage, prior to acceptance by the system of the
data for storage, the user is authenticated via a secure but
anonymous method 31. Requiring the user to be authenticated
can provide the advantage of allowing the user to feel confi-
dent that his/her identity cannot be mimicked and that the data
will be safe from both internal and external threats. For
example, the user can be authenticated using one or more of
the authentication methods described herein. Also, prior to
acceptance by the system of the data for storage, the service
provider is authenticated via a secure method 32. Requiring
the service provider to be authenticated in addition to the user
can provide the advantage of providing assurance to the user
that he is talking to or interacting with a real service provider.
For example, the service provider can be authenticated using
one or more of the authentication methods described herein.
As noted herein, the authentication can be bi-lateral (requir-
ing both the user and the service provider to be authenticated
prior to entering a transaction) which provides the benefit of
both user and service provider being mutually assured of the
other’s authenticity.

Authentication systems and methods described herein are
believed to provide various advantages. In some examples,
the authentication and storage of the data limits storage and
retrieval of the data to only the unique (but otherwise anony-

US 9,177,169 B2

5

mous) user that created, modified, or caused the creation or
modification of the data, and only in conjunction with the
specific, similarly-authenticated service provider (e.g., a pro-
gram running on a computer system or other automaton pro-
viding a service or application such as a data storage service,
financial transaction service, digital rights management ser-
vice, etc.) employed by the user to create or modify the data.
It is also believed that the authentication processes described
herein provide an advantage of limiting the storage and
retrieval of the data by a service provider to only that portion
of the data which was created or modified by that specific
service provider with that specific user. Thus, a user can
authenticate with multiple different service providers using a
single device without fear that any service provider will be
able to share or otherwise access other similarly-stored infor-
mation associated with a different service provider. In some
additional examples, the authentication processes described
herein can prevent both the user and service provider from
individually or collectively repudiating the transaction that
created or modified the data. This provides the advantage of
validating the transaction. In some additional examples, the
authentication processes described herein can prevent a false
service provider from representing itself to the user as the
legitimate service provider. This can provide the advantage of
allowing a user to be confident of the service provider’s
identity when entering a transaction with the service provider.
In some additional examples, the authentication processes
described herein can prevent a false user from representing
itself to the service provider as the legitimate user. Similarly,
this can provide the advantage of allowing a service provider
to be confident of the user’s identity when entering a trans-
action with the service provider.

Returning to FIG. 1A, prior to acceptance of the data for
storage, the data is encrypted 33, The data can be encrypted
by an algorithm and/or cryptographic key known only to the
party using, for example, one or more of the encryption meth-
ods described herein. Also described herein are systems and
methods for encryption and decryption of data using algo-
rithms and/or cryptographic keys known only to the party(s)
that created the data. Using such algorithms can provide the
advantage of protecting the privacy of the data.

After encryption and prior to storage of the data, the
encrypted data is further obfuscated and fragmented 34. The
data can be obfuscated and fragmented using, for example,
one or more of the fragmentation methods described herein.
In general the obfuscation and fragmentation methods
described herein obfuscate and fragment the data such that:

no fragment represents by itself any portion of the
encrypted data;

no small subset of fragments can be used to determine the
encrypted data; and

a larger subset of fragments, but not all fragments, are
sufficient to determine the encrypted data without error.

After obfuscation and fragmentation of the encrypted data,
the fragments are dispersed for storage 35. The dispersal can
be accomplished using, for example, one or more of the
dispersion techniques described in more detail herein and
which disperse the segments such that:

no subset of fragments sufficient to determine the
encrypted data resides within a single or small subset of
places;

the identification of point within the data storage location
for each stored fragment can only be determined by a com-
bination of a unique code assigned to the user, a unique code
assigned to the service provider, and, optionally, other codes
dependent on the application implemented by the service
provider;

40

45

6

the identification of location cannot be used to determine
any of the codes just described.

Prior to retrieval of the data from storage, the user is
authenticated 36. The user can be authenticated via a secure
but anonymous method such as the authentication methods
described herein. Because the authentication is anonymous to
authenticator, the system can provide the advantage of elimi-
nating the need for the authenticator or the service provider to
store a database of identities.

Prior to retrieval of the data from storage, the service pro-
vider is also authenticated 37. The service provider can be
authenticated via a secure method such as the authentication
methods described herein. Upon correct authentication of the
user and service provider, a sufficient subset of fragments is
retrieved from dispersed data storage and the encrypted data
determined therefrom 38. The encrypted data is delivered to
service provider for decryption 39. The encrypted data can be
decrypted using, for example, an algorithm and/or crypto-
graphic key known only to one of the parties using one or
more of the methods described herein.

FIG. 2A depicts an overview of a data flow for generating
an access code (also referred to herein as a data container
identifier) for accessing data stored in a data container 10. The
data container 10 stores data that a particular service provider
is allowed to access, use and/or modify with the permission of
the user. The data container 10 can be analogized to a virtual
safe deposit box, where two keys are needed to open the
virtual safe deposit box, with one key 22 belonging to the
service provider and the other key 28 belonging to the user. To
open the virtual safe deposit box (e.g., to access the data in the
data container 10), both the user 26 and the service provider
20 must provide their keys 28 and 22 which, when combined,
generate a unique data container identifier 14 that enables
access to the data stored in the data container 10. As such,
because keys are needed from both the service provider 20
and the user 26 to determine the location of the data, access to
the data stored in the data container 10 is restricted to the
authorized user/service provider pair. Requiring keys from
both the service provider 20 and the user 26 additionally can
provide the advantage of providing a system in which the
storage provider 20 has no access to data except when the
authenticated user 26 is present.

More particularly, the user 26 and the service provider 20
each have unique tokens 27 and 21 respectively. The tokens
provide information used to authenticate the user 26 and the
service provider 20 and to access the data in the data container
10. The tokens can, for example, take the form of a portable
device such as a dongle or a keycard or be incorporated in
another device such as a mobile phone. Token 27 includes,
among other information, identity information in the form of
a user ID 28. Similarly, the service provider token 21
includes, among other information, identity information in
the form of a service provider ID 22. Prior to allowing access
to the information in the data container 10, both the user 26
and the service provider 20 are authenticated by an authenti-
cation system (not shown) based on information provided via
their respective tokens 27, 21. The authentication system
authenticates not only the user 26 but also the service provider
20 before allowing access to the secured data in the data
container 10. While the user ID 28 and the service provider ID
22 become known to the authentication system during the
authentication process, they are retained in the authentication
system for a limited length of time. After authentication ofthe
service provider and the user, the user ID 28 and the service
provider ID 22 are combined to generate the unique data
container identifier 14 that identifies the location of the data
container 10.

US 9,177,169 B2

7

In one particular simplified example of a combination
method to generate a data container identifier shown in FIG.
2B, a concatenation of the user ID 28 and the service provider
1D 22 forms the unique data container identifier 14. For
example, the user ID 28 and the service provider 1D 22 can
each be a sting of alphanumeric characters (e.g., a string of 64
digits). In the example to follow the user ID 28 and the service
provider ID 22 are described as a string of eight numeric
digits for simplicity. If one were to assume the user ID 28 was
the eight digit string of “35445566” and the service provider
1D 22 was the eight digit string of “13579246”, the unique
data container identifier 14 can be generated based on a con-
catenation of the user ID 28 and the service provider ID 22
(e.g., user ID & service provider ID) resulting in a unique data
container identifier 14 of “3544556613579246”.

While the example in FIG. 2B above is based on a simple
concatenation of the user ID and the service provider 1D,
other functions that combine the service provider ID with the
user ID to form a unique data container identifier can be used.
In general, any function of

Sxy)y=k

can be used to combine x and y (e.g., the user ID and the
service provider ID, respectively) to create k, the data con-
tainer identifier 14, as long as the function f(x,y) generates a
unique result for each combination of x and y. One example of
such a function is a one way permutation, a function f (X,
y) in which k can be easily calculated but by which cannot be
easily reversed, e.g., knowing k, one cannot easily determine
x ory. One benefit of using a one way permutation to generate
the data container identifier 14 is that, were one to receive the
data container identifier 14, the two IDS used to generate the
data container identifier (e.g., user ID and the service provider
ID) could not be easily determined. An exemplary one way
permutation is described below. However, other irreversible
one way functions can be used to form the data container
identifier 14. The use of an irreversible one way function
provides additional security in comparison to use of a revers-
ible function such as the one described in FIG. 2B.

In some additional examples the unique data container
identifier 14 not only can be based on a combination user ID
28 and the service provider ID 22 (e.g., as described above),
but also may include additional data/variables as input to the
function (e.g., f(x,y,z)=k) or as additional iterations of the
function (e.g., f(z,f(x,y))=k) or as combinations of different
functions (e.g., f(z, g(x,y))~k).

In addition to restricting access to the information stored in
the data container 10 based on the unique data container
identifier 14 formed based on the user ID 28 and service
provider ID 22, the data stored in the data container 10 can be
further protected by encryption and dispersal of the data. In
general, before being stored in the data container, data is
encrypted, fragmented, and dispersed to multiple data storage
locations. When needed, the data from the multiple data stor-
age locations is retrieved, re-assembled and delivered to an
authorized recipient for decryption.

An exemplary fragmentation and dispersion process is
shown in FIG. 3A and graphically depicted in FIG. 3B. In
general, the fragmentation and dispersion processes
described herein can provide systems and methods for safe
data storage in many places while simultaneously protecting
the privacy of the data and its owner(s). These systems and
methods allow the data to be safely stored while protecting
privacy by one or more of the following: precluding any
single or small subset of places from holding a recognizable
or derivable copy of the data; precluding the loss of data by
the destruction, theft or replication of data storage locations in

15

20

40

45

50

55

8

one or a small subset of places (e.g., all data storage locations
within one country); precluding the determination of the
party (e.g., a natural person, a program running on a computer
system, or other automaton) that created, modified, or caused
the creation or modification of the data.

In FIG. 3A a process receives 46 unencrypted data (e.g.,
unencrypted data 58, FIG. 3B). The unencrypted data is
encrypted 48 to generate encrypted data (e.g., data 60, FIG.
3B). The encryption can employ various encryption pro-
cesses. For example the token 27 can include cryptographic
information and the data encryption can occur on the token
27. This method allows the data to be encrypted without the
cryptographic information being communicated outside of
the token, thus increasing the security of the cryptographic
information.

In some examples, however, communication of the unen-
crypted data to the token from the user computer and com-
munication of the encrypted data from the token to the user
computer (and ultimately to the A&DDS system) may be time
consuming due to limited processing power of the token and
or the data transfer rate between the token and the user com-
puter. In some alternative examples, rather than encrypting
the data on the token, the token generates a unique file encryp-
tion key which the secure data storage application uses to
encrypt the file. The file encryption key is encrypted with the
user encryption key in the token and stored (in the encrypted
form) with the file. Other encryption processes could addi-
tionally/alternatively be used to encrypt the data. Allowing
data to be transmitted to/from the data storage locations 12 in
encrypted form (e.g., the data is encrypted prior to uploading
the data to the data storage locations and is decrypted only
after the data has been retrieved from the data storage loca-
tions) provides an additional level of data security.

Once the data is encrypted, the data is sent 50 to the
A&DDS system. The A&DDS system receives 52 the
encrypted data and then obfuscates and fragments 54 the
encrypted data into multiple fragments (e.g., encrypted and
obfuscated data fragments 62, FIG. 3B). The A&DDS system
determines 55 data storage locations and points therein to
which to disperse fragmented data based on a data container
identifier generated using a combination of a user ID and
service provider ID and, optionally, other factors. The
A&DDS system stores 56 the fragments in the determined
dispersed data storage locations (e.g., data storage locations
64, FIG. 3B, akin to data storage locations 12 of FIG. 2A).

In some additional examples, the A&DDS system may
receive data that is either encrypted or unencrypted. The
received data is (further) encrypted by using an encryption
key formed from a combination (e.g., using a one-way hash
function) of the User ID, the Service Provider ID, and option-
ally other factors. This encryption key is never stored, but
re-created when needed to store or retrieve data and only after
the authentication of the user and of the service provider.
Since the A&DDS system cannot create this encryption key
without the presence of the authenticated user and of the
authenticated service provider, during the absence of either
party the stored data cannot be decrypted.

Data storage locations are separated according to specific
design criteria. For example, the data storage locations can be
located in different geographic zones such as on multiple
continents, in multiple countries or states, or separated by a
geographic distance that is great enough to eliminate the
concern that a single natural disaster or physical attack could
eliminate access to multiple locations (or even every location
in a particular zone) such that the data could not be reas-
sembled from the remaining available locations (e.g., a dis-
tance greater than 10 miles, greater than 50 miles, or greater

US 9,177,169 B2

9

than 100 miles). In another example, the data storage loca-
tions can be located in different legal jurisdictions such that
the data could not be reassembled from the locations available
within a subset of one or more legal jurisdictions, and such
that the data could always be reassembled from other loca-
tions outside of any arbitrary subset of one or more legal
jurisdictions. In another example, the data storage locations
can be confined to locations within a set of one or more legal
jurisdictions such that the data can always be reassembled
from the locations available within one (or a small subset) of
those legal jurisdictions regardless of events occurring within
other legal jurisdictions. In another example, the data storage
locations can be confined to a set of locations controlled by a
set of one or more organizations (e.g., corporation or a gov-
ernment department) such that the data can always be reas-
sembled from the locations available within a particular one
(or a small subset of those) organization(s) and simulta-
neously can never be reassembled using only locations avail-
able outside that particular one (or small subset of) organiza-
tion(s). Such design criteria as illustrated by these examples
can be used singularly or in logical combinations, depending
on business, technical, regulatory or other needs for the spe-
cific instance of implementation of these systems and meth-
ods.

The data is dispersed using an information dispersal algo-
rithm (e.g., using one or more of the information dispersal
algorithms described herein), making it impossible to recon-
struct the encrypted data, in whole or in part, without access-
ing and receiving data from at least a predefined minimum
number of different locations. As a result theft of the contents
of'any combination of locations less than this minimum will
not permit assembly of even the encrypted data. Additionally,
even ifa thief were to hold the encrypted data, the thief cannot
derive either the service provider ID or the user ID of the
service provider and user who stored the data. Additionally,
even if the thief of the data somehow were to obtain the
encrypted data, the user ID, and the service provider 1D, the
thief could not view the data because (as described in more
detail herein) the thief could not decrypt the data as none of
the systems hold any of the encryption/decryption keys or the
identification of the encryption algorithm needed for decryp-
tion.

In addition to storing the data in a dispersed manner requir-
ing a minimum number of locations to reconstruct the
decrypted data, the data is dispersed in a manner that provides
redundancy in the data, enabling reconstruction of the data
from a subset of less than all of the locations. Storing the data
in such a dispersed manner can eliminate single points of
vulnerability to physical, electronic or internal attack because
if a particular location is not available for data retrieval, the
redundancy in the data enables the data to be reconstructed
without requiring access to the unavailable location. Thus, the
data is stored redundantly in many places while simulta-
neously not existing in any one particular place or region. The
data belongs to and can only be obtained and decrypted by a
specific user and service provider. However the system stor-
ing the data does not know which user or service provider
stored the data nor can it decrypt the data even if the user and
service provider were known.

For example, in a simplified example with only three dis-
persed data storage locations any one of the data storage
locations can be inoperable and the data can still be restored
based on the remaining available locations. Assuming the
user begins with unencrypted data that he/she desires to store
in a secure manner, the user encrypts the data to form
encrypted data, represented in this example as “12345678”.
The encrypted data is sent to the A&DDS system and the

10

15

20

25

30

35

40

45

50

55

60

65

10

A&DDS system fragments the data into multiple different
fragments. For example, the encrypted data can be divided
into two fragments where fragment #1 is “1234” and frag-
ment #2 is “5678”. (Note: for clarity obfuscation is not
included in this simple example.) To generate an additional
data fragment, the A&DDS system calculates some derivative
of'the two fragments such as the are then stored in dispersed
data storage locations. For example fragment #1 could be
stored in the United States, fragment #2 could be stored in
Germany, and fragment #3 could be stored in Australia. In this
example the encrypted data can be restored using the frag-
ments from any two of the data storage locations. For example
if the location located in the United States were inoperable,
the encrypted data can be restored based on the data frag-
ments stored in Germany and Australia as further described
below.

In the simple example above some of the fragments
included portions of the encrypted data. In a more secure
example the fragmentation method simultaneously obfus-
cates the fragments with a mathematical function go chosen
such that no fragment includes a direct representation of any
portion of the encrypted data. For example the encrypted data
“12345678” can be obfuscated and fragmented by the func-
tion g(12345678) into multiple fragments of “802752”,
“013566”, “482346”, etc. In such an obfuscation and frag-
mentation method the disclosure of any fragment does not
disclose a portion of the encrypted data. Methods of obfus-
cation and fragmentation are described in more detail herein.

An exemplary data assembly and decryption process is
shown in FIG. 4A and a graphically depicted example is
shown in FIG. 4B. In general, when needed, the data from a
subset of the multiple data storage locations is retrieved,
re-assembled and delivered to an authorized recipient for
decryption. As noted herein, however, the data cannot be
located nor can it be retrieved without the presence of both
permitted, authenticated parties because the data container
identifier used to retrieve the data container from points
within multiple dispersed data storage locations is based on
processing of a combination of the parties’ user ID and the
service provider ID. Due to the redundancy in the stored data
during the dispersion process, the data from a subset of the
data storage locations is sufficient to reassemble the
encrypted data. Thus, if one or more of the data storage
locations is non-functional or inaccessible, the data can nev-
ertheless be reassembled using other data storage locations.

More particularly the A&DDS system identifies 65 frag-
ments for retrieval based on a data container identifier that is
based on a combination of a user ID and service provider 1D
and, optionally, other factors. The A&DDS system retrieves
66 the fragments from at least some of the dispersed data
storage locations identified based on the data container iden-
tifier and reassembles 68 the data fragments to generate the
encrypted data. The encrypted data are sent from the A&DDS
system and received 69 by the authorized recipient process.
The recipient process decrypts 70 the encrypted data.

Using FIG. 4B, an example is described where redundancy
enables reconstruction based on only some of the dispersed
data storage locations. In this example data from six of the
twelve data storage locations (e.g., locations identified with
reference numerals 72a, 72b, 72¢, 72d, 72e, and 72f) is
retrieved. The A&DDS system reassembles 68 the retrieved
data fragments 76 to regenerate the encrypted data 78. The
encrypted data 78 is decrypted 70 to generate unencrypted
data 79.

For example, continuing the simplified example above
with only three dispersed data storage locations storing frag-
ments #1, #2 and #3, the A&DDS system identifies the loca-

US 9,177,169 B2

11

tions of the fragments within the dispersed data storage loca-
tions and assembles data from a subset of the data storage
locations to reproduce the encrypted data. In this example,
data from any two of the three data storage locations is suffi-
cient to reassemble the encrypted data. For example, if frag-
ment #1 of “1234” and fragment #2 of “5678” are retrieved
then the A&DDS system merges the data to reconstruct the
original encrypted data of “12345678”. If fragments #1 and
#3 are retrieved, then fragment #2 can be determined by
subtracting modulus, , fragment #1 (“1234”) from fragment
#3 (“6912”) to reproduce fragment #2. Similarly, fragments
#2 and #3 are retrieved, then fragment #1 can be determined
by subtracting modulus, , fragment #2 (“5678”) from frag-
ment #3 (“6912”) to reproduce fragment #1. Thus, in this
example the encrypted data can be restored using the frag-
ments from any two of the data storage locations.

In some aspects, a user can desire to have a single device
that is capable of providing an authentication method for
multiple, different applications. This can provide the advan-
tage of convenience for the user and encourage the user to
take appropriate actions to protect the device/information
used in the authentication process. For example, a user can
have multiple, different data containers with access to each of
the data containers being restricted to a particular service
provider. FIG. 5A shows a system for providing secure access
to data stored in multiple, different data containers 80a and
805. While only two data containers are shown, a user can
have any number of data containers with each data container
being associated with a different service provider. Each data
container 80a and 805 stores data that a particular service
provider is allowed to access, use and/or modify with the
permission of the user. As described herein, access to a data
container is restricted to a user/service provider pair based on
a data container identifier (e.g., data container identifiers 82a
and 82b) that is generated from a user ID 86 and the service
provider ID (e.g., service provider IDS 84a or 845). The user
1D 86 for generating the data container identifier for each of
the data containers 80a and 805 is the same. Thus, the user is
provided with access to multiple, different data containers
using a single token 88 that provides the user ID 86. However,
while the user ID 86 used to generate the data container
identifiers 82a and 825 for accessing different data containers
80a and 805 is the same, the service provider ID used to
generate the data container identifiers 82a and 8256 will differ
based on the service provider associated with the data con-
tainer. For example, data container 80q is associated with
service provider A and the corresponding data container iden-
tifier 824 is based on a combination of the service provider ID
844 for service provider A and the user ID 86, while data
container 8054 is associated with service provider B and the
corresponding data container identifier 825 is based on a
combination of the service provider 1D 844 for service pro-
vider B and the user ID 86.

In one simplified example shown in FIG. 5B, a user has
multiple, different data containers 91a and 915 with access to
each of the data containers being restricted to a particular
service provider (e.g., access to data container 91a is limited
to the user and service provider A and access to data container
9156 is limited to the user and service provider B). In the
example to follow the user ID 96, the service provider ID 94a,
and the service provider ID 945 are described as a string of 5
numeric digits for simplicity. For example, if one were to
assume the user ID 96 was the 5 digit string of “44444” the
service provider ID 94a was the 5 digit string of “12345”, and
the service provider ID 945 was the 5 digit string of “67890”,
then the unique data container identifiers 92a and 925 for data
containers 91a and 915 respectively can be generated based

10

15

20

25

30

35

40

45

50

55

60

65

12

ona concatenation ofthe user ID 96 and the respective service
provider ID (i.e., service provider ID 94a for data container
91a and service provider 1D 945 for data container 915). As
such, the data container identifier for data container 91a is
“4444412345” while the data container identifier for data
container 915 is “4444467890.

While the example in FIG. 5B above is based on a simple
concatenation of the user ID and the service provider ID,
other functions that combine the service provider ID with the
user ID to form a unique data container identifier can be used
such as the one-way permutation functions mentioned above
and discussed in further detail below. The data container
identifiers generated by those functions are unique to each
user-service provider pair. Furthermore, were one to receive
any data container identifier so generated, neither the user ID
nor the service provider ID could be easily determined.

This description of the exemplary embodiments is
intended to be read in connection with the accompanying
drawings, which are to be considered part of the entire written
description. Terms concerning attachments, coupling and the
like, such as “connected” and “interconnected”, refer to a
relationship wherein components communicate to one
another either directly or indirectly through intervening struc-
tures, unless expressly described otherwise.

A centralized authentication system with safe private data
storage and method of providing centralized authentications
with safe private data storage are described herein in connec-
tion with the figures. In the following description, it is to be
understood that system elements having equivalent or similar
functionality are designated with the same reference numer-
als in the figures. It is to be further understood that aspects of
the present invention may be implemented in various forms of
hardware, software, firmware, or a combination thereof. In
particular, various system modules described herein are pref-
erably implemented in software as an application program
that is executable by, e.g., a general purpose computer or any
machine or device having any suitable and preferred micro-
processor architecture. The various functionalities described
herein is preferably implemented on a computer platform
including hardware such as one or more central processing
units, a random access memory, and input/output interface(s).
The computer platform also includes an operating system and
microinstruction code. The various processes and functions
described herein may be either part of the microinstruction
code or application programs which are executed via the
operating system. In addition, the computer platform may
include various other functional software elements (e.g., net-
work drivers, communication protocols, etc.) as well as other
peripheral devices connected to the computer platform such
as an additional data storage device.

Various aspects of the present invention can be embodied
in the form of methods and apparatus for practicing those
methods. Code to implement the present invention may be
embodied in the form of program code operably disposed in
tangible media, such as in system memory or stored on data
storage media such as a fixed disk, floppy disk, CD-ROM,
hard drives, or any other machine-readable data storage
medium wherein, when the program code is loaded into and
executed by a machine, such as a computer, the machine
becomes an apparatus for practicing the invention. The code
for implementing various aspects of the present invention
may be transmitted over some transmission medium, such as
over electrical wiring or cabling, through fiber optics, or via
electromagnetic radiation, wherein, when the program code
is loaded into and executed by a machine, such as a computer,
the machine becomes an apparatus for practicing the inven-
tion. When implemented on a general-purpose processor, the

US 9,177,169 B2

13

program code segments combine with the processor to pro-
vide a unique device that operates analogously to specific
logic circuits. For the purpose of this disclosure, the term
“processor” may be used to refer to a physical computer or a
virtual machine.

It is to be further understood that, because some of the
constituent system components described herein are prefer-
ably implemented as software modules, the actual system
connections shown in the figures may differ depending upon
the manner in which the systems are programmed. It is to be
appreciated that special purpose microprocessors may be
employed to implement various aspects of the present inven-
tion. Given the teachings herein, one of ordinary skill in the
related art will be able to contemplate these and similar imple-
mentations or configurations of the present invention.

For example, while in some embodiments described above
the storage is dispersed among multiple locations, in some
aspects the authentication and storage can be used in a system
that does not include dispersed storage (e.g., the data is stored
in a single location).

Before describing in detail the various aspects of the
present invention, a general introduction to an environment in
which the invention may be deployed is presented in connec-
tion with FIG. 6.

With reference to FIG. 6, the Internet 114 is a worldwide
system of computer networks—a network of networks in
which a user at one computer or other device connected to the
network can obtain information from any other computer and
communicate with users of other computers or devices. The
most widely-used part of the Internet is the World Wide Web
(often-abbreviated “www” or called “the web”). One of the
most outstanding features of the web is its use of hypertext,
which is a method of cross-referencing. In most web sites,
certain words or phrases appear in text of a different color
than the surrounding text. This text is often also underlined.
Sometimes, there are hot spots, such as buttons, images, or
portions of images that are clickable. Clicking on hypertext or
a hot spot causes the downloading of another webpage via a
protocol such as hypertext transport protocol (HTTP). Using
the web provides access to millions of webpages of informa-
tion. Web surfing is done with a web browser, such as Apple
Safari® and Microsoft Internet Explorer® browsers. The
appearance of a particular website may vary slightly depend-
ing on the particular browser used. Versions of browsers have
plug-ins which provide animation, virtual reality, sound, and
music. Interpreted programs (e.g., applets) may be run within
the browser.

FIG. 6 shows a plurality of interconnected computer sys-
tem networks 102 and remote user terminals 110. More spe-
cifically, the networks 102 may be computer system networks
run by service providers. A typical networked computing
environment can be broadly described as comprising users
and service providers. A service provider delivers some form
ofinformation, informational access, or access to resources to
a user electronically via computer systems and networks,
such as those shown in FIG. 6. A user may be regarded as a
consumer of the provided service. In general, many different
types of service providers may be present in a given net-
worked environment, such as the environment shown in FIG.
6. Online merchants represent a class of e-commerce service
providers, while web portals represent a class of information
service providers. Internet service providers are entities that
provide a network communication link to the Internet as a
service. Many of these service providers provide access to
their particular service or resource only after a user has been
properly authenticated. The service provider then makes use
of the aspects of the user’s identity it has been authorized to

10

15

20

25

30

35

40

45

50

55

60

65

14

access. Non-limiting examples of service providers include
public or corporate web services such as e-commerce sites
(e.g., amazon.com), public mail servers (e.g., mail.google.
com), wikis, social network services (e.g., facebook.com),
traditional brick-and-mortar merchant systems (e.g., sales
systems at Macy’s or Home Depot), and traditional and on-
line banking services, to name a few.

Each service provider computer system network 102 may
include a corresponding local computer processor unit 104,
which is coupled to a corresponding local data storage unit
106 and to local user terminals 108. A service provider com-
puter system network 102 may be a local area network or part
of'a wide area network, for example.

The illustrated environment also includes a third-party
(i.e., not a user and not a service provider as discussed above)
A&DDS system 202, which includes a processing system
identified as the A&DDS management system 204. In certain
embodiments, the A&DDS management system 204 pro-
vides a vehicle for providing mutual authentication during a
transaction. That is, the authentication operations of the sys-
tem can be used to authenticate not only the user but also the
service provider before any data from its secured data storage
is released. Moreover, as part of this authentication process,
the A&DDS management system 204 itself can be authenti-
cated to the user and the service provider as provided in more
detail in the remainder of this description. The A&DDS man-
agement system 204 includes local user terminal(s) 201 (used
to perform administrative actions, for example) and local data
storage 203. The A&DDS system 202 is shown coupled to
remote user terminals 110 and service provider computer
system networks 102 through the Internet 114, but it should
be understood that communications between these devices
and networks can also be by way of a private network or
dedicated connection.

Each of the plurality of user terminals 108, 110 may have
various devices connected to their local computer systems,
such as scanners, barcode readers, printers, fingerprint scan-
ners, mouse devices, keyboards, and other interface devices
such as the token interface 112 described in more detail
below.

The computer processor unit 104 of the service provider
computer system network 102 can take the form of a server
and front-end graphical user interfaces (Guts) for providing
its associated services/resources to user terminals 108, 110.
The computer processor unit 104 can also provide back-end
GUS, for example, used by system administrators. User ter-
minals 108, 110 are said to be clients of the computer proces-
sor unit 104. A client is any computer or device thatis capable
of connecting to a server computer or device (referred to as
the host) through a network, wired or wireless. A client may
also refer to computer software or firmware that communi-
cates with (e.g., calls and connects) to a server. The afore-
mentioned GUS can take the form of, for example, a webpage
that is displayed using a browser program local to the user
terminal 108, 110. Front- and back-end GUS may be portal
webpages that include content retrieved from the one or more
data storage devices 106. As used herein, portal is not limited
to general-purpose Internet portals, such as Yahoo! or Google
but also includes GUS that are of interest to specific, limited
audiences and that provide the user access to a plurality of
different kinds of related or unrelated information, links and
tools as described below.

A user may gain access to the services/resources provided
by a service provider’s computer processor unit 104 of the
computer system network 102 by using a user terminal 108,
110, programmed with a web browser or other software, to
locate and select (such as by clicking with a mouse) a par-

US 9,177,169 B2

15

ticular webpage accessible via local area network. The con-
tent of the webpage is located on the one or more data storage
devices 106. The user terminals 108, 110 may be micropro-
cessor-based computer terminals that can communicate
through the Internet using the Internet Protocol (in), kiosks
with Internet access, connected personal digital assistants
(e.g., a Palm® device manufactured by Palm, Inc., iPaq®
device available from Compaq, iPhone® from Apple, Inc. or
Blackberry® device from RIM), or other devices capable of
interactive network communications. User terminals 108,
110 may be wireless devices, such as a hand-held unit (e.g., a
cellular telephone or a portable music player such as an
iPod® device) that connect to, and communicate through, the
Internet using a wireless access protocol or other protocols.
Other types of devices may also be substituted in the system
for user terminals 108, 110. One non-limiting example may
be a doorlock having an embedded processor without a visual
browser that generates GUIS for a user display, such a pro-
cessor instead making hidden requests to a predefined web
server and in accordance with a reply from the web server
performing some operations, e.g., triggering a switch or relay,
responding with a reply, etc. In order to access a secure area,
the user presents a token to an appropriately configured
reader. The service provider in this example can be viewed as
the corporate information technology or security system.

The system and method described herein may be imple-
mented by utilizing all or part of the environment described
above in connection with FIG. 6. It should be apparent to one
of'ordinary skill in the art that the system may be incorporated
in a local area network, in a wide area network, or through an
Internet 114-based approach, such as through a hosted or
non-hosted application service, or through a combination
thereof.

FIG. 7 illustrates a particular embodiment of a centralized
authentication system with safe private data that may be
implemented using the computing environment illustrated in
FIG. 6. The A&DDS management system 204 includes a
service provider front end 205 for interfacing with the service
provider agent 220, a user front end 208 for interfacing with
the combined user terminal/token interface 222, a dispersed
data storage management system 210, and a key management
system 212. A token 27 communicates with the user terminal/
token interface 222, which is in communication with the
service provider agent 220 either locally or remotely through
the Internet 114. The service provider agent 220 and the user
terminal/token interface 222 communicate with the A&DDS
management system 204 through a network such as the Inter-
net 114.

Although FIG. 7 illustrates a single service provider front
end 205 and a single user front end 208, it should be under-
stood that this is for illustrative purposes only. That is, in
embodiments the system can include multiple instances of
both the service provider front end 205 and the user front end
208 each with its own respective address. These front ends
can be located at a single location or at multiple locations.
This provides two advantages. First, for a dispersed system,
users and service providers can be connected to the nearest or
most convenient front ends. Second, in the case a location
fails, it is still possible for service provider and user to access
other front ends.

As described above, a service provider delivers some form
of information, informational access, or access to other
resources or services (collectively or individually,
“resource”) to a user electronically via computer systems and
networks, such as those shown in FIG. 6. A user may be
regarded as a consumer of the provided service. The service
provider can be thought of as an entity that provides some

20

25

40

45

60

16

Internet (or other networked) service either directly to the
user (e.g., e-commerce) or indirectly (e.g., through a third
party). In a second sense, the service provider can be thought
of as combination of computer programs, computers, net-
work links that implement the functionality of this Internet (or
other networked) service. Therefore, in order to resolve this
uncertainty, this later aspect of the service provider is referred
to herein as the service provider agent 220. The computer
programs used by service providers to implement the service
provider agent 220 include web servers and data base man-
agement systems, to name a few.

The A&DDS management system 204 is in communica-
tion with the dispersed data storage system 216 through a
network 214, which may be a public network such as the
Internet 114 or a private network. The dispersed data storage
system 216 includes multiple dispersed and networked data
storage locations 218.

The system shown in FIG. 7 is designed to facilitate user
authentication with service providers for secure interactions
between users and service providers, as well as provide secure
data storage of data on behalf of the service providers orusers.

The user’s stored data can include personal and financial
data associated with a specific natural person, such as a name,
a user address (e.g., a postal address), a phone number, an
e-mail address, a credit card number, credit card expiration
date, a bank account number, a bank routing number, a social
security number, a driver’s license number, an identification
number, a place of birth, a date of birth, a mother’s maiden
name, and any other personal identification information rel-
evant to the user-service provider relationship. Data can also
include preference data, such as at least one shopping profile,
at least one music profile, at least one banking profile, and
other data that indicates the user’s preferences for transac-
tions, vendors, products, or services of various kinds as well
as historical data representing the person’s status in a loyalty
program or other indicia of the person’s previous transaction
history with a given service provider.

In various embodiments, discussed below, a user identifi-
cation code (user ID) and service provider identification code
(service provider ID) are used in retrieval of data from the
dispersed data storage system 216. Preferably, these codes are
not known to the A&DDS management system 204 on a
permanent basis. Instead, they become known (if at all) only
during an authentication phase while the user and service
provider are being authenticated.

In embodiments, all data are dispersed in accordance with
a selected information dispersal algorithm over multiple dis-
persed and networked data storage locations 218 in such a
way that it is not possible to reconstruct the whole record or
part of it from less than some predefined minimum number of
data storage locations 218. Information dispersal algorithms
are discussed in more detail below.

As one means to authenticate a particular user, the system
makes use of portable devices such as hardware identification
tokens 27 which hold the aforementioned user ID and one or
more data encryption keys. In exemplary embodiments any
cryptographic calculations are performed and protocols
reside in the token 27 itself rather than in the user terminal/
token interface 222. The user terminal/token interface 222
only helps to pass messages to/from the token 27 and other
components in the system. This approach allows any suitably
configured user terminal, not necessarily only trusted termi-
nals, to be used in the system since all secure elements are in
the token 27, which is produced in accordance with estab-
lished security measures known in the art for both hardware
and software. The system is thus very secure and mobile, i.e.,

US 9,177,169 B2

17

the token 27 can be used with a wide array of user terminal/
token interfaces 222 such as unsecure computers, pay termi-
nals, etc.

Asaresultofboth service provider and user authentication,
the system can obtain a data container identifier, correspond-
ing to data stored in a data container associated with the
authenticated user/service provider pair. This data container
identifier is used by the system to retrieve the data container
from the secure data storage of the system and is discussed in
more detail below.

One advantageous feature of the system is that every act of
user/service provider authentication involves the generation
of a temporary transaction identifier (“ticket”) which is
unique in time and space. The ticket allows the system to
associate a user with a service provider during a given trans-
action. The system knows to whom it issued the ticket and
learns the identity of party that returns the ticket to the system.
A fticket’s life cycle starts when either side (user or service
provider agent 220) requests a new ticket and ends when the
other side (service provider agent 220 or user respectively)
produces this ticket back to the system. The association
between the service provider and the user is established when
the ticket circulates through the system. For example, if a user
(through the token 27) initiates the transaction by requesting
a ticket, then the ticket traverses the following circular path:
The user front end 208 of the A&DDS management system
204—token 27—=service provider agent 220—service pro-
vider front end 205 of the A&DDS management system
204—user front end 208 of the A&DDS management system
204. Conversely, if a service provider (through the service
provider agent 220) initiates the transaction by requesting a
ticket, then the ticket traverses the following circular path:
service provider front end 205 of the A&DDS management
system 204—service provider agent 220—token 27—user
front end 208 of the A&DDS management system 204—>ser-
vice provider front end 205 of the A&DDS management
system 204.

The ticket may carry various information. Inembodiments,
this information is a combination of human-readable service
provider name, network node address from where this ticket
was issued, and a nonce (number used once) based on a
random number.

The security of data is ensured via a number of measures.
First, in embodiments, necessary user access and encryption
keys are kept only on portable tokens 27. Most of this infor-
mation is not known to the A&DDS management system 204
on any permanent basis (i.e., the data are not stored on hard
disks or other kind of non-volatile memory). For user authen-
tication to be successtul, mutual authentication (e.g., authen-
tication of the token 27 and service provider agent 220, as
well as authentication of the A&DDS management system
204 to the token 27 and service provider agent 220) is
employed.

The token 27 preferably is a physical object such as a
hardware token or an embedded token, containing a computer
chip, integrated circuitry, smart card chip or software, or
combination thereof. If token 27 is a hardware token, it pref-
erably takes the form of a ring or other jewelry; a dongle; an
electronic key; a card, such as an IC card, smart card, RFID or
proximity card, debit card, credit card, ID badge, security
badge, parking card, transit card; or the like.

Ifthetoken 27 is an embedded token, it preferably takes the
form of a cell phone; a personal digital assistant; a watch; a
computer; computer hardware; or the like. The token 27 pref-
erably includes an input/output support element or a device
interface that may take the form of any number of different
apparatuses, depending upon the particular application in

10

25

40

45

18

which it is used and depending upon the type of device with
which it interacts. In embodiments, the input/output interface
includes a port, such as a wireless communications port (e.g.,
Near Field Communication (NFC) interface), a serial port, a
USB port, a parallel port, or an infrared port, or some other
physical interface for communicating with an external elec-
tronic apparatus, whether by contact or contactless method.

Second, in embodiments, each service provider is regis-
tered in the A&DDS management system 204 in the same
way as private users, i.e. all service providers are given a
unique service provider ID and corresponding access keys
and encryption keys. The service provider must pass mutual
authentication procedures before being provided access to
data.

Third, in embodiments, the user ID and service provider ID
pair, made known during the authentication process, are used
to form a data container identifier that identifies a data con-
tainer in the dispersed data storage system 216. This data
container holds data that a particular service provider is
allowed to access, use and/or modity. The data container can
be analogized to a safe deposit box where two keys are needed
to open it—one belongs to a bank, the otherto the client. Each
relationship that a user has with a service provider is associ-
ated with its own data container since all service provider
id/user ID pairs are unique.

Fourth, in embodiments, to provide reliable storage of data
containers the system adds some redundancy information and
scatters the data over multiple dispersed and networked data
storage locations 218. When data is read back, the combina-
tion of the user ID and service provider ID are used to identify
a particular set of data storage locations 218 and the way to
restore the integrity of the data container. Dispersed data
storage is preferred for most applications but is not a require-
ment of all embodiments of the invention.

Fifth, in embodiments, the use of redundancy information
ensures that it is still possible to reconstruct a data container
in the event that some data storage locations (i.e., not more
than some predefined minimum number of them) become
non-functional.

Sixth, in embodiments, data containers are ciphered (e.g.,
encrypted) by secret keys, which become known as a result of
user authentication. In addition, data containers may be
ciphered (e.g., encrypted) by the service provider secret keys.

Seventh, in embodiments, as mentioned above data con-
tainers can be identified by a unique combination of user ID
and service provider ID. However, if the data container iden-
tifier is a mere concatenation of those IDS, there may be
potential security issues. For example, a person having an
access to a full list of available data containers can find all the
data associated with a particular user ID. To avoid this possi-
bility the combination of user ID and service provider ID is
transformed by a one-way function to produce the data con-
tainer identifier so that it is not possible (in any practical
sense) to restore either the user ID or the service provider ID
from resulting data container identifier.

System from the User Point of View:

From the user point of view, user authentication is based on
atleast the “what somebody has” principle using the token 27.
As described above, the token 27 is preferably a small elec-
tronic device that the user has at his disposal. FIGS. 8A
through 8D illustrate just some of the many possible embodi-
ments of a token 27. From the user’s point of view, the token
27 is auniversal key that opens many doors (i.e., it canbe used
to authenticate the user to many different service providers).

For applications of a token requiring high security, the
token—or the token in combination with an input/output
element—may include the following components: a keypad

US 9,177,169 B2

19

(alphanumeric), interactive display, or other type of data entry
mechanism (collectively referred to herein as “user inter-
face”) that allows a user to compose or modify a message; a
user interface for inputting data representing a secret (it
should be noted that the user interface for generating or modi-
fying a message may, but does not have to, be the same as the
user interface for the entry of the data representing a secret);
a display for showing the message and/or secret to the user; a
scanner or reader for receiving at least one type of biometric
data for a biometric characteristic of the user; memory for
securely storing a secret ofthe authorized user, biometric data
of the authorized user, and/or other security information; a
processor or circuitry for verifying input of the secret or
biometric data as being that of the authorized user; a proces-
sor or circuitry for generating or originating digital signa-
tures; and/or an output for outputting from the device and
transmitting information including the message and digital
signature therefor. Preferably, the device also includes
memory for storing and exporting encryption key(s), a token
1D, a user 1D, and other information. For lower security
applications, not all of the above elements are necessary.

In certain embodiments, the token is smart enough to ask
for a second kind of authentication criteria, such as a “what
you know” authenticator (e.g., PIN) for critical applications
and to display a service provider name during the authenti-
cation process.

FIG. 8Ais ablock diagram of the functional components of
the token 27. The heart of token is the secure element 310,
which includes a microprocessor, memory (e.g., random-
access and read-only memories) for operating instructions
and data storage, and input/output interfaces. The micropro-
cessor operates in accordance with a program resident in its
memory. As discussed in detail in the following sections,
every token 27 has stored in its memory a token ID, a token
key, auser ID and optionally a data encryption key. The token
1D is a unique number assigned to this token and known to the
A&DDS management system 204. It is not a secret parameter
and is used for authenticating the token 27.

The token key is a secret parameter. This token key is also
known to the A&DDS system. This token key is used for
token-to-system mutual authentication and creation of a
ciphered (e.g., encrypted) communication channel between
the system and the token.

The user ID is the most sensitive parameter stored in the
token. This user ID is used to derive a data container identifier
used in retrieval of the user’s stored data. If sent outside of the
token at all, it should only be sent to the A&DDS system via
a ciphered (e.g., encrypted) channel.

The data encryption key is optional and used in some
applications where data may (and preferably is) encoded/
decoded by the token. For example, a user could use the
A&DDSM system for password storage or storage of other
personal data. The user accesses this data through a user
terminal 108, 110. When retrieved from the A&DDSM sys-
tem, the user terminal can pass the retrieved data to the token
for decryption and return to the user terminal for viewing
and/or editing the data, and pass the data back through the
token for encryption before transmission back to the
A&DDSM system for storage.

In another example, the token may generate a unique file
encryption key. The token gives this file encryption key to the
user terminal 108, 110 so that the user terminal 108, 110
encrypts datato be stored in the A&DDS management system
204. The token encrypts the file encryption key and, option-
ally, an indication the encryption algorithm used with the data
encryption key and then causes these encrypted data to be
stored in the A&DDS management system 204.

20

40

45

20

The architecture of the secure element as well as its soft-
ware ensure that the token key (and, in some cases the data
encryption key) cannot be exported from the token memory.
They also ensure that the user ID may be transmitted only via
ciphered channel.

One possible implementation of the secure element 310 is
a cryptographic card. Available cards can communicate by a
legacy ISO-7816 contact interface, a contactless interface
(e.g. ISO 14443) or a USB interface (or any combination of
these interfaces). In some cases the secure element 310 may
have a single wire protocol interface for communication with
an external contactless transceiver. This secure element may
be packaged in an ID-1 plastic body (e.g., the well-known
bank card body) or may be included in a SIM card, which has
a secure microprocessor and memory, as used in mobile
phones. Alternatively, the secure element may take the form
of a packaged die with pins for soldering (or other connec-
tion) to an appropriately configured token body with interface
connections for power and communications.

The simplest form of token is an ID-1 smart card which
connects to a computer via USB interface or via a card reader.
In that case it is responsibility of software at a user terminal
108, 110 to show a service provider name and accept user
consent for authentication (described in various embodi-
ments below).

Some embodiments may allow for the secure element 310
to have its own user interface 320, i.e. display, buttons, touch
screen, and the like. This solution is preferred as it does not
depend on any software at the user terminal 108, 110.

If the secure element 310 does not have its own user inter-
face 320, it may be embedded in ahousing, e.g.,a MP3 player,
personal data assistant, or mobile phone, that provides its own
user interface 340 as well as its own communications elec-
tronics 330 for communicating with an external user terminal
(e.g., card reader or computer). Some mobile phones, per-
sonal data assistants and the like may already include com-
ponents 310, 330 and 340. The token functionality could then
be implemented in an application of the device. The secure
element 310 may be a 3G mobile phone multi-application
SIM card or specially installed second cryptographic ele-
ment. Any number of interfaces (e.g. Bluetooth or USB) may
be used to connect the device to the user terminal 108, 110.

The user terminal 108, 110 may include, if necessary, soft-
ware for routing various communications between the
browser resident on the user terminal 108, 110, the user front
end 208, and the token 27. This software can be permanently
resident on the user terminal, such as in the form of a browser
plug-in, or in form of drivers or executable programs, includ-
ing programs running as a service (daemons). Some parts of
user terminal software may be downloaded during each ses-
sion as, for example, an applet. A servlet based approach may
also be used.

FIG. 8B illustrates a basic smart card or fob token 224A.
The token 224A includes an input/output interface 225, such
as a USB connector, for connection to a user terminal/token
interface 222, which may be either a specialty terminal (such
as a point of sale terminal of a merchant) located at the service
provider premises or the user’s computer, which in turn has
Internet access. Instead of or in addition to a wired interface
such as a USB interface, the token 224A can have a wireless
interface for connection to a suitably configured user termi-
nal/token interface 222. In embodiments, the token 224 A may
also include a consent button 227.

FIG. 8C illustrates an alternative embodiment of a token
224B. The token 224B has a user interface including a screen
or display 229 and input buttons 231. The token 224B also
includes a wireless communications interface (illustrated by

US 9,177,169 B2

21

wireless communications 233), such as an Infrared Data
Association interface, contactless NFC interface, or Blue-
tooth interface.

FIGS. 8D and 8E illustrate that token functionality may be
incorporated into mobile phones 224¢ and 224D as applica-
tions resident on the phones. In the embodiment of FIG. 8D,
the mobile phone 224¢ can be connected to a wired interface
such as a USB port of a user terminal/token interface 222 by
a wired connection 235. Alternatively, in the embodiment of
FIG. 8E, the mobile phone 224D can communicate with the
user terminal/token interface 222 wirelessly (as illustrated by
wireless communications 237), such as by way of NFC, Blue-
tooth, SMS/GPRS/3G or other appropriate technology.

In order to authenticate a user accessing the website of a
particular service provider, or to authenticate the user at a
service provider premises (e.g., at a point of sale terminal),
the user connects his token 27 to a user terminal/token inter-
face 222. The user presses a button on the token 27 to confirm
that the user seeks to be authenticated to the service provider.
In embodiments, the consent button could be implemented as
a soft button on the display of the user terminal. As a result of
token authentication and service provider authentication (the
processes of which are described in detail below), the service
provider is provided access to the data needed by the service
provider for interaction with the user. This data (e.g., a cus-
tomer profile) are retrieved from the dispersed data storage
system 216, assembled and sent to the service provider agent
220. The data allows the service provider to know, for
example, how to address the user, how loyal the user is and
what kind of discounts should be provided. The service pro-
vider can modify the data and send it back to the A&DDS
management system 204 for safe storage in the dispersed data
storage system 216. Sensitive data are not maintained at the
service provider agent or associated data storage and thus are
not as vulnerable to inappropriate access.

Asnoted above, the functionality of the system is similar to
that of a safe deposit box. Data are stored in the virtual safe
deposit box. To open the box two keys are needed: one from
the user and one from the service provider. Once the box is
open, the service provider and/or the user obtains the data and
uses it in a current session. When the session is over, the
service provider and/or user may put modified data back into
the safe deposit box or return the box with the content
unmodified.

It is important to note that each safe deposit box or “data
container” contains only data relevant to a particular user/
service provider pair. This data is generated as part of, for
example, the user’s registration at a service provider’s web-
site or at the time of issuing a loyalty card and may be updated
as the relationship with the user progresses to reflect the user
history with the provider. By registration it is meant an opera-
tion in which a user provides identity information to a service
provider in order to establish a permanent business relation-
ship with the service provider; thereafter, the service provider
recognizes the user through some form of authentication cre-
dentials. Data for another service provider is stored in a sepa-
rate data container and are available only to that particular
service provider.

System from Service Provider Point of View:

To use the A&DDS management system 204 for third-
party identification/authentication and for safe private data
storage, the service provider must first register with the
A&DDS management system 204. The service provider is
assigned a service provider ID and one or more keys for
authentication and traffic ciphering (e.g., encryption). These
keys and service provider ID can be provided in the form of
tokens that are installed on the service provider’s servers,

25

30

35

40

45

22

such as at the USB port of the servers. If the service provider
uses a hosting service as its service provider agent 220, then
this information can be provided as, for example, a software
token to the hosting service. Any necessary software is then
installed at the service provider agent 220 for enabling this
kind of third-party identification/authentication. For
example, the software may include, generally speaking, a
library analogous to what is provided by the OpenlD Foun-
dation for those web entities using their authentication sys-
tem. The library is installed on the server and modifications
are made to the service provider’s files/programs to call this
library’s procedures for user authentication/database
requests. By way of example, the Apache web Server, which
is the most widely used server today, is configured to be able
to use external modules for authentication. Module names
start with mod auth method, where method is the name of the
authentication method. This module can be provided for use
by aservice provider server. The service provider may choose
to trust the A&DDS management system 204 with storing
data associated with a specific user. Alternatively, in cases
where the service provider already has a large investment in a
reliable database and does not want to redesign its core tech-
nologies, it is possible to store within the dispersed data
storage system 216 only certain pieces of information, such as
the service provider’s local ID that it associates with the
presented user. It should be understood that this form of data
need not necessarily be, but may be, stored in a dispersed
format. No matter which kind of service is chosen, the user
experience will be the same.

If the service provider interacts with the user through a
webpage, the service provider preferably modifies its login
webpage to add an appropriate graphical symbol, textual
prompt (analogous to the ° perm or Microsoft Liven) single
sign-on service symbols) or button that allows a user to
authenticate himself/herself using the token 27. When the
user presses on the button or points-and-clicks the graphical
symbol, a new graphical user interface (e.g., webpage) may
be displayed to the user. A ticket is created and used in the
authentication process of authenticating both the user and/or
the service provider (described in more detail below). The
ticket is issued by the A&DDS management system 204 and
passed between the user terminal/token interface 222 and the
service provider agent 220. This new graphical user interface
prompts the user to plug-in (by wired or wireless connection)
his token 27 and activate the token 27 (e.g. press the consent
button 227 in the embodiment of FIG. 8B). When the user
activates the token 27, a new authentication transaction
begins and if authentication is successful, the service provider
agent 220 receives the stored data from the A&DDS manage-
ment system 204. For example, the service provider agent 220
can receive all the information about a particular user that has
been gathered to date by the service provider, e.g., the user
information that was gathered during initial user registration
with this service provider along with historical data (e.g.,
purchase or other transaction history, etc.). If the service
provider had chosen to keep all data in its own database, then
the retrieved data may carry only a pointer (or reference, or
key) to the user record, such as in the form of a user identifier
used in the database system accessible to the service provider
agent 220.

FIG. 9 is a schematic illustration of the user front end 208
of the A&DDS management system 204. The user front end
208 preferably takes the form of a computer program that runs
on a networked computer. This computer has a processor,
random access memory, a number of network interfaces and
a mass data storage device (e.g., hard disk drive). If this
computer is used solely for the purpose of user front end

US 9,177,169 B2

23

functionality, then data stored on a hard disk includes princi-
pally operating system files and the user front end program.
The user front end 208 also includes configuration data,
which is used to discover other components of the A&DDS
management system 204 (e.g., dispersed data storage man-
agement system 210, service provider front end 205 and key
management system 212), to the extent those other compo-
nents are resident on other networked computers/processors
forming the A&DDS management system 204 or at other I[P
addresses in a network (virtual or otherwise). From a network
point of view, the user front end 208 uses IP for communica-
tions with other devices and has three principal connection
points. The first connection of interest is the connection 239
from the user terminal/token interface 222 to the user front
end 208 as a token server. This token server has a public IP
address and is the entry point for all authentication operations
with user terminals/token interfaces 222. Those operations
may arrive from all over the world. The user front end 208 has
another IP connection 241, which is a connection point to the
dispersed data storage management system 210. The user
front end 208 uses this connection 241 to read data containing
token keys for mutual user front end/token authentication.
This connection is an intra-system connection and may have
an internal system [P address (e.g., an address inside a virtual
private network). Finally, the user front end 208 has a con-
nection 243 to exchange data (e.g., tickets, user IDS or other
information) with the service provider front end 205. This
connection may also use an intra-system network connection
through, for example, a virtual private network.

The user front end 208 is responsible for authentication of
the user using a token 27. Authentication is based on a unique
token number and the user front end’s knowledge of a token
key that is a secret. The token key (as well as enabled/disabled
state and other possible parameters) may be stored in an
external data storage system, such as the dispersed data stor-
age system 216 managed by the dispersed data storage man-
agement system 210. This option allows the user front end
208 not to keep records describing tokens in its memory or
attached mass data storage devices. After successful authen-
tication the token 27 sends another secret datum: the user ID,
which is a unique number stored on the token 27 and used in
data retrieval from the dispersed data storage system 216. The
user ID should not be confused with a token 1D, which is
another ID stored on the token but not used in connection with
a service provider ID for retrieval of a data container.

When the user front end 208 receives this user ID, it gen-
erates a temporary data structure 245 in its random access
memory. The data structure 245 can be used as a way to
supply the service provider front end 205 with the data con-
tained therein. This data structure 245 holds information on a
newly created transaction:

aunique identifier of the transaction (ticket) which prefer-
ably includes a random number and the network address of
the user front end 208;

the user BD; and

a data encryption key (optional).

Every transaction is assigned a time-to-live parameter,
which represents the maximum time period the transaction
may be kept in the memory of'the user front end 208. Regard-
less of the time-to-live parameter, the data structure 245 can
be used as a means to supply the service provider front end
205 with the data contained therein.

FIG. 10 is a schematic illustration of the service provider
front end 205 of the A&DDS management system 204. The
service provider front end 205 preferably takes the form of a
computer program that runs on a networked computer. This
computer has a processor, random access memory, number of

20

40

45

55

24

network interfaces and mass storage device (e.g., hard disk
drive). If this computer is used solely for the purpose of
service provider front end functionality, then data stored on a
hard disk includes principally operating system files and the
service provider front end program. The service provider
front end 205 also includes configuration data, which is used
to discover other components of the A&DDS management
system 204 (e.g., the dispersed data storage management
system 210 and the user front end 208), to the extent those
other components are resident on other networked comput-
ers/processors forming the A&DDS management system 204
or are located at another IP address. From a network point of
view, the service provider front end 205 supports IP commu-
nications and has three connections. The first connection 247
is an access point for service provider agents 220. This con-
nection 247 is preferably by way of a public IP address and is
used for all exchanges with service provider agents 220. The
service provider front end 205 has a second connection 251
for communicating with the dispersed data storage manage-
ment system 210. The service provider front end 205 uses this
connection to receive/send data containers containing data to
the dispersed data storage management system 210. Being an
intra-system connection, this connection 251 may have an
internal system IP address, for example an address inside a
virtual private network. Finally, the service provider frontend
205 preferably has a third connection 249 for exchanging data
(tickets, user IDS or other information) with the user front end
208. This connection may also use an internal system IP
address, for example an address in a virtual private network.

The service provider front end 205 can be considered a
socket in the A&DDS management system 204 to which a
service provider agent 220 connects in order to obtain data
from or submit data to the system. The service provider front
end 205 is responsible for authentication of service provider
agents 220, ticket transfer and data exchange between the
A&DDS management system 204 and the service provider
agents 220. In embodiments described more fully below,
when the service provider front end 205 receives a ticket from
a service provider agent 220, it calculates a network address
of the user front end 208 that issued the ticket and then
requests the user ID and (optionally) data encryption key
from the user front end 208. Next, the service provider front
end 205 combines service provider ID and user ID, and obfus-
cates this combination to obtain a data container. A service
provider agent 220 requests the A&DDS management system
204 to execute a particular operation (e.g., CREATE, READ,
WRITE or DELETE) on the data container. In the case of a
CREATE operation, an empty data container may be created.
When it is a READ operation, the data container is provided
by the dispersed data storage management system 210 to the
service provider front end 205, optionally decrypted with a
data encryption key, and sent to the service provider agent
220.

For WRITE operations, the service provider front end 205
receives data for reliable storage from service provider agent
220. The service provider front end 205 optionally encrypts
this data with a data encryption key and sends the data con-
tainer to the dispersed data storage management system 210
for storage. A DELETE operation requests that the dispersed
data storage management system 210 destroy a data con-
tainer.

FIG. 11 illustrates in more detail the dispersed data storage
system 216 and its connections. The dispersed data storage
system 216 is used in the system to keep two kinds of system
resources: (i) data containers having token secret keys and
token status, and (ii) data containers having other data.

US 9,177,169 B2

25

All data containers are identified by a data container iden-
tifier (i.e., file name) that is derived with an algorithm based
on a combination of unique identifiers in the system, namely
(in the case of a data container having other data) the user ID
and service provider ID. Other values may also contribute to
the combination. This combination is obfuscated by one-way
function. A one-way function is a function that is easy to
compute but whose inverse is very difficult to compute. The
one-way function generates the data container identifier that
is used to retrieve a data container from the dispersed data
storage 216. The purpose of obfuscation is to make it impos-
sible (in any practical sense) to restore the user ID and/or
service provider ID from the data container identifier.

In one exemplary embodiment, the obfuscationuses a RSA
encoding procedure with a known public key. In cryptogra-
phy RSA is an algorithm, named after its inventors (Rivest,
Shamir and Adleman), for public-key cryptography. RSA is
widely used in electronic commerce protocols, and is
believed to be secure given sufficiently long keys. RSA uses
a public key and a private key. The public key can be known
to anyone and used for encrypting messages. Messages
encrypted with the public key can only be decrypted using the
private key. The public key consists of the modulus n and the
public (or encryption) exponent e. The private key, which
must be kept secret, consists of the modulus n and the private
(or decryption) exponent d. The A&DDS system generates a
public/private key pair. The public key is stored at the location
in the system responsible for generating the data container
identifier (e.g., token 27 or the A&DDS management system
204 depending on the embodiment). The private key is
destroyed, deleted, or set aside in highly secure data storage
for data recovery in case of disaster. In order to derive the data
container identifier, the user ID and service provider ID are
first concatenated. That is, for illustrative purposes only, if
user ID is (in binary) 0110 and the service provider ID is
1110, then the concatenation

user IDIservice provider ID=01101110

“»

where “I”’ represents the concatenation operator. This concat-
enation is then encrypted with the public key, i.e.,

data container identifier=[(user ID|service provider
ID)“Imodulus,,

The public key encryption acts as a one-way function since
the private key is unavailable to decrypt the data container
identifier to reveal the user ID and service provider ID.

The dispersed data storage system 216 includes multiple
dispersed and networked data storage locations 218. The
dispersed data storage management system 210 preferably
includes one or more data collectors 242. The data storage
locations 218 are networked computers equipped with hard
disks; e.g., solid state disk drives. Their primary task is to
permanently store data. A data collector 242 receives requests
from the user front end 208, the service provider frontend 205
and the key management system 212. Those requests are to
create, read, write, or delete a data container specified by its
data container identifier. In certain embodiments, the
resources are stored in a dispersed manner in accordance with
an information dispersal algorithm. When data is stored (a
write operation) in the system, a data collector 242 executes
the information dispersal algorithm to convert the data into a
plurality (e.g., 10-20) of data segments and calculated deriva-
tives thereof (for redundancy) and sends each segment to a
separate data storage location 218. To execute a read request,
a data collector 242 first collects the corresponding segments
from the data storage locations 218, and, in case one or more
data storage locations 218 fail, a data collector 242 obtains
segments from other data storage locations 218. The intrinsic
redundancy of the information dispersal algorithm is used to
preserve data and can also be used to check for data errors.

35

40

45

55

26

Various information dispersal algorithms may differ in
particular details, such as the matrix and arithmetic used, and
whether the information dispersal algorithm tries to identify
errors itself or in reliance on some other data. But information
dispersal algorithms tend to work in the same way. The opera-
tion of an information dispersal algorithm can be illustrated
by the following examples. Assume a long number such as
12345678 is to be stored in a dispersed manner. To store the
number safely, it is divided into two halves: 1234 and 5678.
The first half (1234) is stored at a first data storage location
(location #1) (e.g., first data server). The second half (5678) is
stored at a second data storage location (location #2). Next,
some derivative of the halves is calculated, such as the sum of
the halves, 6912 in this example. This derivative is stored at a
third data storage location (location #3). With this approach,
any one of three data storage locations can be lost/corrupted/
unavailable and the original data can be restored from the
remaining two locations. For example, iflocation #1 is down,
the original data can be restored using the values in location
#2 and #3: the data in location #1 is restored by subtracting the
data in location #2 from the data in location #3. Likewise, if
location #2 is unavailable, its data can be derived by subtract-
ing the value in location #1 from the value in location #2.

By increasing the storage 1'% times (when compared to
simply storing 1234 and 5678 in two locations), the original
information is recoverable if two data storage locations are
available. It is noted that the use of derived redundancy seg-
ments also reduces the data storage requirements. If pure
mirrored redundancy were used, four data storage locations
(i.e., two locations for storing 1234 and two locations for
storing 5678) would be required. Further, while using more
data storage locations (four rather than three), not all combi-
nations of locations can be used to restore the original data.
For example, the original data cannot be restored from two
locations having stored therein 5678.

The above-described three location redundancy scheme
can be modeled as

(m,k)=(2,1)

m+k=n=3

where m represents the size (in segments) of the original data
and the absolute minimum number of segments required to
restore information, k represents the redundancy data (i.e.,
the number of segments of data that can be lost), and n
represents the total number of chunks.

Even better results can be obtained if a fourth data storage
location is added for storing the difference between the datain
the second and first locations, i.e.,

4444=5678-1234

The data storage is double that used when merely storing the
data in two locations; but, any two segments of data can be
used to restore the original information, even if none of the
segments containing original (i.e., non-derived) data portions
(e.g., 1234 and 5678) is available. For example, if both loca-
tion #1 and location #2 are unavailable, the content of these
locations, and thus the content of the original data, can be
restored from location #3 and location #4, i.e.,

location #3 — location #4
2

location #3 + location #4
2

contents of location #1 =

contents of location #2 =

Moreover, if an individual location is still responding but
returns corrupted data instead of the real information, this can
be detected and the original data restored.

US 9,177,169 B2

27
This redundancy scheme can be modeled as
(m,k)=(2,2)
where
k=2
m=2
n=4

Using four data storage locations, any two can be lost and the
remaining two can be used to restore the original data.

In an exemplary embodiment the information dispersal
algorithm used by the system to store the data in dispersed
form is the Reed-Solomon algorithm and further elaborated
in U.S. Pat. No. 5,485,474 Scheme for Informational Dis-
persal and Reconstruction [1996]. From a very high level and
simplified perspective, the Reed-Solomon algorithm works in
accordance with the foregoing description, though using
Galua fields and polynomial algebra. The algorithm breaks
the original data into multiple parts or chunks and provides
data redundancy, as opposed to simply mirroring the original
data (i.e., storing the same part of data multiple times). The
algorithm conforms to the (m, k), m+k=n scheme described
above. Thatis, there are nlocations, and at least any m of them
can be used to recover the original information. There are k
additional locations for redundant data. Errors totaling k/2
can also be detected and corrected when k/2 locations appear
functional at first glance but actually provide corrupt data.

In exemplary embodiments the information dispersal algo-
rithm has 12 locations and conforms to a (6, 6) scheme.
However, greater or less redundancy can also be built in, such
as (6, 12) and (8, 16) schemes.

Another way to protect the data is to cipher (e.g., encrypt)
them with a symmetric key. The key may be calculated as a
hash of a concatenated user ID and service provider ID. This
encryption operation is independent from that undertaken
with the token’s data encryption key.

The data storage locations 218 are preferably dispersed
over predefined zones 240, to 240,, where n is preferably
three or more, in such a way that it is impossible to restore
data from the data storage locations 218 belonging to a single
zone 240. On the other hand, it should be possible to restore
data even in case a whole zone 240 of data storage locations
218 is nonfunctional. For a (12, 6) information dispersal
algorithm the latter condition may be met by three zones 240
with four data storage locations 218 each. For a (16, 8) infor-
mation dispersal algorithm six, five, and five data storage
locations 218 are required in three different zones.

FIG.12A is the message sequence diagram for user authen-
tication at a particular service provider agent 220 where the
ticket is issued by the user front end 208. In the authentication
method illustrated by the sequence diagram of FIG. 12A, the
token 27 starts the process, asking for a new ticket from the
user front end 208. The user front end 208 logically links the
ticket and user ID. The token 27 sends the ticket to the service
provider agent 220. Then, the ticket is produced to the service
provider front end 205. The service provider front end 205
obtains the location address of the ticket issuer (i.e., of the
user front end 208). The service provider front end 205 then
obtains the user ID. It is now possible to retrieve correspond-
ing data. The service provider front end 205 links both user
and service provider IDS and optionally other codes and asks
the dispersed data storage management system 210 for the
data that corresponds to this pair. Finally the data is collected
by a data collector 242 and sent to the service provider agent
220.

As a more detailed example of user and operation, with
specific reference to FIG. 12A, the process starts when the
user presents himself/herself to a service provider, such as

10

15

20

25

30

35

40

45

50

55

60

65

28

when the user accesses the webpage of a service provider
agent 220. The user is prompted to authenticate using the
token 27. For example, one way to prompt the user is to send
awebpage with a HTML form in it to the user terminal/token
interface 222. The user connects the token 27 to the user
terminal/token interface 222 (via, for example, a USB port, a
contactless reader, or by taking appropriate steps with the
user’s mobile phone) and presses the soft or hard consent
button. The token 27 then starts the process of mutual authen-
tication with the user front end 208. The token 27 sends and
receives messages to/from the user front end 208 via the user
terminal/token interface 222. The authentication and data
retrieval sequence described below follows.

For communications between the token 27 and the user
front end 208, any number of standard mutual authentication
algorithms may be used, such as those explained in the ISO/
TEC-9798 specification, the entirety of which is hereby incor-
porated by reference herein. The details of this mutual
authentication are not described herein so as to avoid unnec-
essarily obscuring the details of the present invention. Only a
very high level illustration of this authentication procedure is
discussed below in connection with messages 701 through
709, with certain features unique to the present system also
described in connection therewith.

Every token 27 uses its own authentication key, known to
the A&DDS system. An essential part of any authentication is
the sending of the token ID from the token 27 to the A&DDS
system. This is shown at message 701 where the token 27
sends its token ID (which is not to be confused with the user
ID) to the user front end 208.

The A&DDS management system 204 stores some infor-
mation about each token that it creates. This information
includes at least a token state (enabled or blocked) and a token
key for use in token authentication. This information is stored
in a data container in the same dispersed data storage system
216 as the other data (i.e., as the data containers associated
with a user/service provider pair). Therefore, a data container
identifier is used to retrieve this information from the dis-
persed data storage system 216. The user front end 208 has the
token ID (from message 701) and some predefined number
TSPID, which serves as a virtual service provider ID. Essen-
tially TSPID is a system ID that is used in combination with
any given token ID for purposes of deriving a data container
identifier. The user front end 208 uses both identifiers to
calculate a data container identifier for the data container
having the token information described above for the pre-
sented token 27. In exemplary embodiments this data con-
tainer identifier is derived by using the TSPID and token ID as
inputs to a one-way function

data container identifier=f,,,,. ., {7SID,token ID).

At message 703, the user front end 208 sends this data con-
tainer identifier to the dispersed data storage management
system 210 with a READ request shown as READ(data con-
tainer identifier) which equates to READ(S,,,..,..,,(TSPID,
token ID)). Passing the data container identifier queries the
dispersed data storage management system 210 for the infor-
mation on (i) whether this token ID is registered in the system
and is active (i.e., not blocked or deactivated) and (ii) the
cipher keys associated with the token.

The system does not use a single master key, a technique by
which a public token number, stored on the token, is com-
bined with a secret system-wide private number (the master
key) in a one-way function to yield a public result that is also
stored on the token, and by which any device knowing the
master key and the one-way function may verify the authen-
ticity of the token. Therefore, there is no master key that can

US 9,177,169 B2

29

be stolen and used to compromise the system. Rather, sepa-
rate symmetric keys (e.g., cryptographic keys and optionally
identification of the cryptographic algorithm) are used for
each token 27 issued by the system. Even then, these keys are
not stored in a single place. Rather, the keys are dispersed over
the dispersed data storage system the same way data (i.e., data
containers storing data) are stored in the system.

The dispersed data storage management system 210 uses
the data container identifier to retrieve the data container
containing the token’s secret key(s) and status from the dis-
persed data storage system 216. At message 705, the data
container is sent to the user front end 208. The use of “key(s)”
illustrates that a single key can be used to encrypt communi-
cations back and forth between the user front end 208 and the
token 27, or separate keys can be used for encrypting com-
munications to the user front end 208 and from the user front
end 208,

At this point, the user front end 208 continues the authen-
tication process, which normally results in generation of a
session key or keys, which will be used to encrypt all subse-
quent messages between the token 27 and the user front end
208 during this session. As determined by the authentication
algorithm that is employed, the token 27 and the user front
end 208 exchange messages to complete the mutual authen-
tication. This exchange for completion of the mutual authen-
tication is shown as messages 707 in FIG. 12A. A session key
is derived from symmetric authentication keys and random
challenges exchanged during authentication

At encrypted message 709 the token 27 uses the session
key to encrypt the user ID it has stored in its secure data
storage and (optionally) a data encryption key, and then sends
them to the user front end 208. The user front end 208
decrypts this message and creates and stores in its random-
access memory a data structure 245, which describes this
authentication process. This data structure holds the user ID
and the optional data encryption key along with a ticket. In
embodiments, the ticket is an identifier of the transaction that
is unique in time and space. For example, the ticket can be a
string of ASCII or UTF-coded symbols including a tempo-
rarily unique-for-this-user front end random number, the user
front end network address (possibly a local virtual private
network address) and optionally some other helper informa-
tion.

It should be understood that message sequence 701
through 709 illustrates only one possible message sequence
for mutual authentication between the token 27 and the
A&DDS management system 204. Other procedures can be
employed, such as those used by the various smart cards
available on the market.

Atencrypted message 711 the user front end 208 sends the
ticket over the encrypted channel to the token 27.

At message 713 the token decrypts the ticket and passes it
to the user terminal/token interface 222, which in turn sends
it to service provider agent 220. For example, the user termi-
nal/token interface 222 may insert the ticket into the service
provider agent’s HTML form and then return the form to the
service provider agent 220.

Atmessage 715 the service provider agent 220 connects to
the service provider front end 205, and sends the ticket to the
service provider front end 205. Service provider agents 220
can be considered to have more or less a permanent connec-
tion to the A&DDS management system 204. In this situation,
the service provider front end 205 already has the service
provider ID. If there is no such permanent connection, the
service provider agent 220 and service provider front end 205
perform mutual authentication and session key generation as
discussed above in connection with authentication of the

10

15

20

25

30

35

40

45

50

55

60

65

30

token 27 and the user front end 208. In this manner, the
service provider ID is revealed to the service provider front
end 205.

Atmessage 717 the service provider front end 205 receives
the ticket and obtains the network address of the issuing user
front end 208 from the ticket. The service provider front end
205 then sends the ticket to the so-identified user front end
208, requesting the user 1D and, optionally, the data encryp-
tion key.

At message 719, the user front end 208 finds the data
structure 245 associated with the ticket received from the
service provider front end 205 and replies to the service
provider front end 205 with the user ID and data encryption
key. After this data is transmitted to the service provider front
end 205, the data structure 245 can be deleted from the ran-
dom access memory of the user front end 208.

At message 721 the service provider front end 205, which
has both the user ID (from message 719) and service provider
ID uses both identifiers (and optionally additional codes) to
derive a data container identifier (i.e., the file name of the data
container associated with the service provider/user ID pair).
In exemplary embodiments this data container identifier is
derived by using the user ID and service provider ID as inputs
to a one-way function

J one-wap(service provider ID,token ID)

as described above. This data container identifier is sent to the
dispersed data storage management system 210 as message
721 READ(data container identifier).

At message 723, using the information dispersal algorithm
and data container identifier, a data collector 242 of the dis-
persed data storage management system 210 gathers enough
segments of the data container from the dispersed data storage
system 216, assembles the data container and sends the data
container to the service provider front end 205. The service
provider front end 205 receives the data container and, if
encrypted, decrypts the data using the data encryption key it
received from the user front end 208 in message 719.

At message 725 the service provider front end 205 sends
the data container to the service provider agent 220 in the
same form it was received from the service provider agent
220. The data is preferably encrypted using a session key
established by the service provider agent 220 and the service
provider front end 205 during their mutual authentication
session.

FIG. 12B is message sequence diagram for user authenti-
cation at a particular service provider agent 220 where the
ticket is issued by the service provider front end 205 (as
opposed to the user front end 208 as shown in the sequence
diagram of FIG. 12A). In this approach, the service provider
agent 220 requests a new ticket from the service provider
front end 205. The service provider front end 205 generates a
new ticket and assigns it to this particular service provider
agent 220. The service provider agent 220 provides this ticket
to the token 27. The token 27 in turn authenticates itself
according to an authentication procedure and produces the
ticket to the user front end 208. The user front end 208 links
this ticket with the user ID and sends this linked ticket to the
service provider front end 205, which issued the ticket. The
service provider front end 205 then links both the user ID and
service provider ID and the dispersed data storage manage-
ment system 210 for the data that corresponds to this ID pair.
Finally the data is retrieved and sent to the service provider
agent 220.

With specific reference to the information sequence dia-
gram of FIG. 12B, at message 730 the user begins the inter-
action with the service provider agent 220 by initiating some

US 9,177,169 B2

31

action that, in the service being provided to the user, requires
authenticating the user; e.g., sending an HTTP request (e.g.,
by pressing the image of an HTML authentication button on
the webpage of the service provider agent 220).

At message 732 the service provider agent 220 requests a
ticket from its service provider front end 205. It is assumed
that the service provider agent 220 is already authenticated in
the service provider front end 205. The service provider front
end 205 knows the service provider ID and, therefore, (op-
tionally) a human-readable presentation of the service pro-
vider’s name, e.g. “bookstore”. This human readable presen-
tation, optionally together with a service provider agent-
provided purpose in demanding authentication, may be
included in the ticket issued by the service provider front end
205. The ticket issued by the service provider front end 205
may have, for example, the following form of a universal
resource identifier:

spname:nonce@host:port

where spname is the human-readable presentation of the ser-
vice provider (e.g., bank name, airline name, etc.), nonce is a
number used once (e.g., any sequence which makes the ticket
unique), and host:port denotes the Internet address of the
service provider front end 205. In the present example the
ticket may be:

bookstore:687 @spfe.net:4567

Other parameters may also be present in the ticket.

At message 734 the service provider front end 205 sends
the ticket to the service provider agent 220.

At message 736 the service provider agent 220 relays the
ticket to the user terminal/token interface 222, which presents
the ticket to the token 27. If the token 27 is equipped with a
display (see FIGS. 8B, 8C, 8D), the token can extract the
service provider’s name from the ticket and show this name
(e.g., “bookstore”) and purpose to the user. Alternately a
token 27 without a display may transmit the name and pur-
pose to the user terminal/token interface 222 for display. This
step helps assure the user that the service provider has been
checked and verified by the A&DDS system, and reduces
possibilities for phishing attacks.

The user then presses the consent button on the token 27 to
start the token authentication procedure. Alternately a token
27 without a consent button may employ the user terminal/
token interface 222 to obtain consent from the user. The
authentication of the token 27 may be the same procedure
described in connection with FIG. 12A at messages 701
through 709 (illustrated in FIG. 12B as messages 738). The
one difference is that the ticket is transferred from the token
27 to the user front end 208 (message 740) as opposed to vice
versa once authentication has been completed.

At message 742, using the host:port part of the ticket to
address the corresponding service provider front end 205, the
user front end 208 now sends the ticket and user 1D (received
from the token 27 during messages 738) to the service pro-
vider front end 205 that issued the ticket.

At message 744 the user front end 208 receives from the
service provider front end 205 confirmation of successful
ticket receipt.

At message 746 the user front end 208 relays this confir-
mation to the token 27 via the user terminal/token interface
222.

Atmessage 748 the token 27 sends the confirmation via the
user terminal/token interface 222 to the service provider
agent 220.

10

15

20

25

30

35

40

45

50

55

60

65

32

At message 750 the service provider agent 220 sends a
request GETData(ticket) to the service provider front end 205
for the data. The request includes the ticket received with
message 734.

The service provider front end 205 receives the data
request. The service provider front end 205 has the user ID
(from message 742) and service provider ID (received during
its authentication procedure with the service provider agent
220). The service provider front end 205 can combine both
IDS to obtain the data container identifier as discussed above.
At message 752 the service provider front end sends the data
container identifier as part of a READ request to the dispersed
data storage management system 210 (i.e., READ(data con-
tainer identifier)).

At message 754 the dispersed data storage management
system 210 uses a data collector 242 to gather and assemble
segments of the data container and sends the assembled data
container back to the service provider front end 205.

At message 756, the service provider front end 205 sends
the data container to the service provider agent 220 in the
same form it was received from this service provider agent
220; e.g., in encrypted or unencrypted form.

As should be appreciated based on the foregoing descrip-
tion the user ID parameter stored in the token’s memory is
very sensitive from a security point of view. It is used to
retrieve data from the dispersed data storage system 216. The
alternative embodiments discussed below in connection with
FIGS. 12C and 12D allow the user ID to never leave the token.
In contrast many service providers are associated with public
businesses or applications with widespread visibility for
which anonymity is not a concern. In these cases the corre-
sponding service provider ID may not be as sensitive from a
generic security point of view.

FIG. 12C illustrates an alternative embodiment of the mes-
sage sequence diagram of FIG. 12B. This embodiment pro-
vides enhanced protection of both the user ID and the service
provider ID that are used in deriving the data container iden-
tifier that is used in retrieval of the data by the dispersed data
storage management system 210. This embodiment uses the
nonce portion of the ticket (shown as number “687” in FIG.
12B and generically as x in FIG. 12C) in a specialized way as
described below. Messages from FIG. 12C that are identical
to those in FIG. 12B are identified with the same reference
number and modified messages are identified with the corre-
sponding reference number from FIG. 12B with an appended
“a”.

With specific reference to the information sequence dia-
gram of FIG. 12C, messages 730, 732 and 734 are unchanged.
The service provider front end 205, however, generates a pair
of nonces x and y before sending the ticket message 734
rather than just one nonce. The value ofx is arandom number;
the value of'y depends on the value of x. x is sent to the service
provider agent 220 in the ticket message 734 as part of the
field bookstore:x@spfe.net:4567, but y is kept as a secret in
the service provider front end memory.

Afterreceiving the ticket message 734, the service provider
agent 220 does not simply forward the ticket to the user
terminal as in FIG. 12B. Rather, the service provider agent
220 modifies x according to the following formula:

Neervice provider=Fa(s€1Vice provider TD,x)

At message 736a the service provider agent 220 sends

in the modified ticket ticket.SP in the field

bookstore: X.,,,;cc provie @sple.net:4567. The user terminal/

token interface 222 receives ticket.SP and presents it to the
token 27. The token 27 modifies x to derive:

X,onen=F>(user ID xgp)

Xservice provider

service provider

US 9,177,169 B2

33

The token 27 provides a modified ticket ticket. T containing
the field bookstore: x,,,,, @spfe.net:4567 to the user termi-
nal/token interface 222, which forwards this ticket.T to the
user front end 208 in message 740a.

The user front end 208 forwards this ticket. T in message
742a to the service provider front end 205. When the service
provider front end 205 receives ticket. T, the final calculation
is performed:

data container identifier=f3X, z0n¥)

The functions f, f, and f; along with the values ofthe pair (x,
y) ensure that the data container identifier depends only on the
user ID/service provider ID pair, and not on x or y, and that the
data container identifier is unique for all service provider
ID/user ID pairs. y serves to remove the influence of x on the
output of f5.

One possible implementation of the above protocol is
based on the Paillier Cryptosystem. To use this algorithm two
constant parameters are required. The first is a Paillier Cryp-
tosystem public key (known to all participants) and some
constant number ¢, used because Paillier cannot encode nega-
tive numbers. ¢ introduces an offset in a data container iden-
tifier, e.g.,

service provider IDluser ID+c

thus accounting for Paillier features while leaving a unique
data container identifier. In this case the service provider front
end 205 obtains or generates a random number y, encrypts it
with a Paillier public key to form random number x and sends
the number to the service provider agent 220 in message
734a. The service provider front end 205 records y for later
use. Thus the random number x corresponds to an encrypted
version of y, i.e.,

X=F e pd,Pallier public key)=(Pallier public key)”

The public key for decryption is known to the locations
participating in the procedure. The service provider agent 220
also uses a bit-shifted version of the service provider ID.
Specifically the service provider agent 220 bit-shifts the ser-
vice provider ID by the number of bits in the user ID:

SPID g, p.4=setvice provider IDx2Hers of user ID

The service provider agent does not know the user ID but does
know the number of bits in the user ID. (As a consequence of
this bit-shift:

SPID g,:4.+user ID=service provid.er IDluser ID

Assume the service provider ID is 110011 and the user ID
is 010101. If one were to concatenate these IDS, the service
provider ID would be left-shifted six bit positions, the number
of'bits in the user ID, to become 110011000000. Adding the
user ID to this value would equate to the concatenation of
service provider ID and user ID: 110011010101.) The service
provider agent 220 multiplies the encrypted result of the bit
shift SPID,,, ., by x to form x

service provider*

Xeice provider = 1 (service provider ID, x) =
XX fencrypt (SPIDgpigeq, Pailler public key) =
Jencrypr (v, Pailler public key) X fencypt (SPIDgifieq, Pailler public key) =
(Pailler public key)” X (Pailler public key)spmxh"f"fd =

(Pailler public key)* 5" Pshified

10

20

25

30

35

40

45

50

55

60

65

34

All multiplications are modulus operations. The token 27
then encrypts the user ID with the public key and multiplies
the result by x to derive X, ..,

service provider

Xioken = fa2(user ID, xsp) =
Xservice provider X fencrypr(user ID, Pailler public key) =

(Pailler public key)’"Pstified x (Pgiller public keyy* 2 =

(Pailler public key)’™S"PstifiedvuseriD

(Pailler public key)»+service provider IDiuser ID)

The service provider front end 205 performs the final trans-
formation by encrypting the difference c—y and multiplying
the result by what it received from the token 27, thus obtain-
ing a data container identifier:

data container identifier= f3(Xioken, ¥) =
Xioken X fencrypr(C — y, Pailler public key) =
(Pailler public key)y”””"” provider IDluser ID) o (Pgjfjer public key)*™ =

(Pailler public key)(xervice provider ID\user ID)+c

Per the foregoing description, the service provider front
end 205 can derive the data container identifier without the
user 1D being transmitted through the system. The data con-
tainer identifier can be derived by the service provider front
end 205 after receipt of message 742a.

Messages 744 through 750 are used only to synchronize
the user terminal/token interface 222 (i.e., the browser) and
the service provider agent 220 (i.e., the HTTP server). Mes-
sages 744 through 748 and 752 through 756 are identical to
those discussed above in connection with FIG. 12B. Message
750a is simply a GETDATA() request as no ticket is required.

FIG. 12D illustrates a second alternative embodiment of
the message sequence diagram of FIG. 12B. In this embodi-
ment, the token 27 calculates the data container identifier
using the service provider ID and the user ID. As such, the
user ID does not have to be transmitted outside of the token
27. Messages from FIG. 12D that are identical to those in
FIG. 12B are identified with the same reference number, and
modified messages are identified with the corresponding ref-
erence number from FIG. 12B with an appended “b”. Addi-
tional messages 747 and 749 are also illustrated.

With specific reference to the information sequence dia-
gram of FIG. 12D, messages 730, 732, 734, and 736 are
unchanged. The token authentication process illustrated by
messages 7385 is the same as that described above for mes-
sages 738 of F1G. 12B only the user ID is not transmitted from
the token 27 to the user front end 208. Message 740 is
unchanged. The ticket (and not the user ID) is sent from the
user front end 208 to the service provider front end 205 in
message 742b.

At message 7445 the service provider front end 205 sends
the service provider ID to the user front end 208.

At message 7465 the user front end 208 sends this service
provider 1D to the token 27 via user terminal/token interface
222.

The method sends messages 748 and 750 as with the
method of FIG. 12B. In parallel, however, the token 27 cal-
culates the data container identifier using the received service
provider ID and its own internally stored user ID. Optional

US 9,177,169 B2

35

additional codes may be used to determine the data container
identifier. The token 27 sends this data container identifier to
the user front end 208 in message 747, which in turn sends the
data container identifier to the service provider front end 205
with the ticket in message 749.

Messages 752, 754 and 756 are unchanged from the
description of FIG. 12B.

Key Management:

The key management system 212 is responsible for gener-
ating new tokens 27 and initial registration of those tokens in
the system. The key management system 212 is also respon-
sible for token deactivation and token replacement.

In one exemplary embodiment the key management sys-
tem 212 is a multi-part system as illustrated in the block
diagram of FIG. 13. The key management system 212
includes smart card personalization equipment 212a. In
embodiments the smart card personalization equipment 212a
is a special-designed computerized machine that produces
smart cards and writes data into smart card memory. This
smart card personalization equipment 212a is controlled by
the key management core 212¢, which services commands
from an operator’s console 2124 (e.g., requests to produce
new batches of tokens). Another source of requests to produce
new tokens comes from the key management web service
2126 (e.g., token replacement requests) or other similar pro-
gram.

For security reasons it is preferred that user IDS are not
stored in the system. Therefore a master token 260 is used to
replace lost or compromised tokens 27. The master token 260
holds the information needed to replace an old token 27 (e.g.,
a representation of token ID, user ID and the optional data
encryption key(s)). When a user is authenticated in the system
with his master token 260, a new token 27/master token 260
pair may be generated and sent to the user. At the same time
the previous working tokens 27 are deactivated (e.g. by trig-
gering a deactivation flag for the token ID in the data con-
tainer associated with that token 27 and the authentication
service).

FIG. 14 is a message sequence for replacement of a token
27. The procedure is quite close to that depicted in FIG. 12A.
To deactivate a lost or stolen token 27, the user directs the
browser of the user terminal/token interface 222 to the key
management service webpage (provided by the key manage-
ment web service 2125 of key management system 212) and
authenticates himself using his master token 260. Similar to
message 701 of FIG. 7A, at message 905 the master token
260, through the user terminal/token interface 222, provides a
master token ID to the user front end 208.

Like message 703 of FIG. 12A, at message 910 the user
front end 208 calculates a data container identifier from the
TSPID and the master token ID. The user front end 208 sends
this data container identifier to the dispersed data storage
management system 210 with a READ request; i.e., READ
(data container identifier).

The dispersed data storage management system 210 uses
the data container identifier to retrieve the data container
containing the master token 260’s secret key(s) and token
status from the dispersed data storage system 216. At message
915 (like message 705 of FIG. 12A), this information is sent
to the user front end 208 as part of a data container.

Messages 920 to complete mutual authentication, like
messages 707 of FIG. 12A, are then exchanged between the
user front end 208 and the token 27.

When compared to the encrypted message 709 (FIG. 12A),
encrypted message 925 carries additional information: the
token 1D, user ID, and the optional data encryption key and

10

15

20

25

30

35

40

45

50

55

60

65

36

the algorithm identification of the token 27 to be replaced.
This additional information and the master token ID are
stored in the ticket 927.

Messages 930 through 945 show the ticket path through the
system and are fully equivalent to messages 711 through 717
of FIG. 12A except that the key management core 212¢
replaces the service provider front end 205. In fact, the key
management core 212¢ can play the role of a service provider
front end for key management web service 2125, which in
turn can be considered as a service provider. The difference,
however, is that after production of a ticket, the key manage-
ment core 212¢ receives from the user front end 208 not only
the user ID and optional data encryption key/algorithm, but
also the ID of the token 27 to be replaced (message 950).

At this point in the sequence the key management system
212 has all the information necessary to produce a new pair of
tokens (a normal everyday token 27 and master token 260)
that will point to the same user ID. New token IDS and secret
keys are generated for the pair of tokens 27, 260 and this
information is written into new tokens 27, 260 by the smart
card personalization equipment 212a. As illustrated by mes-
sage 955, a new token record is provided to the dispersed data
storage management system 210 and any old tokens 27, 260
will be marked as deactivated. Message 960 reports the suc-
cess/failure status of the operation to the key management
web service 2125 for communication back to the user termi-
nal/token interface 222 in message 965.

Security Measures:

A number of measures are taken in the system to keep
authentication secrets and data as safe as possible. First, iden-
tifiers (i.e., token ID, service provider ID, user ID) used in the
system should be long integer numbers; for example, at least
64 bits in length. Those numbers are produced by a random
number generator. This makes it difficult to find existing
identifiers by an exhaustive search method. Second, all data
exchange is preferably secured with secret keys that are at
least 128 bits long. Furthermore, data container identifiers are
one-way ciphered (e.g., encrypted) with resulting name
lengths being more than 512 bits. It is impossible (in any
practical manner) to restore the user ID and/or service pro-
vider ID from a data container identifier. Data itself may be
stored in encrypted form with secret keys that are hashes of
the service provider ID and the user ID and that are known to
the system only for the active period when the user commu-
nicates with the system. Moreover, as a service provider
option, data containers may be ciphered (e.g., encrypted) by
the service provider before they are sent to the A&DDS
system. Finally, in embodiments, the A&DDS system does
not store (on any permanent basis) the service provider 1D
assigned to a given service provider or the user ID assigned to
a token. As such, the A&DDS system by itself cannot gain
access to a data container associated with a service provider
ID/user ID pair without the service provider and token going
through the requisite authentication procedures. That is, since
the A&DDS system does not separately maintain lists of user
IDS and service provider IDS, neither it nor unscrupulous
other parties can derive the data container identifier needed to
recover or retrieve the data container.

Examples of Use:

An exemplary use of the A&DDSM system described
herein is for providing third party authentication services in a
service provider/user transaction and for safely storing the
user’s profile data on behalf of the service provider. A typical
service provider/user interaction would be between a vendor
(e.g., on-line bookstore) and a user who has an account with
the vendor. The user accesses the vendor’s website, presents
the token, the authentication procedure is performed and if

US 9,177,169 B2

37

the user is authenticated, the data container containing the
user’s profile data (e.g., name, account information, customer
loyalty information, billing information, etc.) is retrieved for
use by the vendor. When the transaction is completed, the data
can be updated and the vendor sends the data container back
to the A&DDS system for safe storage. In another typical use
of the system, the user can present the token to a suitable
terminal at the physical store of the vendor. The authentica-
tion procedure is again performed and, if authentication is
successful, the data container containing the user’s profile
information is retrieved. When the transaction is completed,
the data can be updated and the vendor sends the data con-
tainer back to the A&DDS system for safe data storage. This
application relieves the user of the need to carry multiple
loyalty cards for multiple vendors.

On-Line Retailer Example:

Application of the system in an on-line retail environment
is now discussed. In this example there are three participants
in the system: (1) the on-line retailer; (2) the customer (e.g.,
the individual that shops with the on-line retailer); and (3) the
third-party authenticator (i.e., the entity that runs the A&DDS
management system 204).

The customer establishes an account with the third-party
authenticator and the third-party authenticator issues one or
more tokens 27 and one or more master tokens 260 to the
customer. For example, in the case of hardware tokens, these
tokens are mailed to the customer. If the token is an applica-
tion that runs on the customer’s smart phone or personal data
assistant, the token application is downloaded to the device by
the customer. The tokens 27 include the user ID and encryp-
tion key(s) discussed above, and the master tokens 260
include the user 1D, master token ID and encryption key(s)
discussed above. A data container is stored in the system
corresponding to each token, including the key(s) for token
authentication and token status. This data container is
accessed using the token ID and another data element (e.g.,
service provider ID of the third-party authenticator).

The on-line retailer also establishes a relationship with the
third-party authenticator to obtain third-party authentication
services and third-party data storage for the on-line retailer.
The third-party authenticator provides any necessary soft-
ware and tokens for communications with the A&DDS sys-
tem and provides the service provider ID to the on-line
retailer. The on-line retailer then adds an icon or other select-
able link on its website.

In this example, it is assumed that the customer has estab-
lished a relationship with (i.e., registered with) the on-line
retailer. That is, the customer has at some point provided user
information to the on-line retailer, which the on-line retailer
uses to create a customer profile associated with the customer.
This customer profile can include information such as cus-
tomer name, address, customer account number, financial
instrument information (e.g., credit card number and billing
address), account username, customer preferences, and the
like. Note that there is no need for a user password as the user
has already been authenticated. Over time, the on-line retailer
can supplement this information with historical information
such as the customer’s purchase history, trends and prefer-
ences, loyalty status, etc. The on-line retailer provides this
information to the third-party authenticator as a data con-
tainer for storage in the dispersed data storage system 216.
This data container is identified and retrieved using a data
container identifier, which is derived from the service pro-
vider ID assigned to the on-line retailer and the unique user ID
stored in the token 27 issued to the customer. The process for
initial creation of a data container is identical to requesting a
data container (i.e., READ command) except messages 721

10

15

20

25

30

35

40

45

50

55

60

65

38

(FIG.12A) and 752 (FIGS. 12B, 12C and 12D) send the data
container identifier with a CREATE rather than READ
request. In response to the CREATE request, a data container
is created at location specified by the data container identifier.
Data for initial storage in the container can also accompany
the CREATE request.

The customer accesses the website of the on-line retailer
and clicks on the authentication icon (or link) displayed on the
webpage. Optionally, a new webpage is displayed prompting
the customer to present the customer’s token, such as by
connecting the token to the USB interface of the customer’s
home computer. The name of the on-line retailer may be
displayed on the customer’s token, and the customer hits the
consent button on the token. The authentication procedures
discussed above for authenticating the token (and thus the
customer) and the service provider are performed amongst
the customer’s token, the service provider ID of the on-line
retailer and the A&DDS system operated by the third-party
authenticator. Assuming the on-line retailer and the customer
have been properly authenticated, the third party authentica-
tor uses a data container identifier (derived using the user ID
of'the customer’s token and the service provider ID assigned
to the on-line retailer) to retrieve and/or reconstruct from the
dispersed data storage system 216 the data container associ-
ated with the on-line retailer/customer pair and transmits this
data container to the on-line retailer. The data container con-
tains the customer’s user profile. As such, the identity and
user information of the customer is revealed to the on-line
retailer and can be used in interacting with the customer and
performing transactions (e.g., purchases). If no changes are
made to the data, the session can terminate (with no changes
to the data container in the dispersed data storage system 216)
or the received data can be written back into the dispersed data
storage system 216 with a WRITE request.

Point-of-Sale Retailer Example:

The system operates in much the same way with commerce
applications that are not electronic, e.g., where the customer
visits the retail location of the service provider. In this
example, assume the service provider is a retail bookstore
(Retail Bookstore). Rather than the customer logging into a
website, the customer presents the customer’s token to a
token interface connected to the Retail Bookstore’s point-of-
sale terminal or kiosk. The point-of-sale terminal acts as the
customer’s user terminal (i.e., home computer) and commu-
nicates between the token and the user front end 208 of the
third party authenticator’s A&DDS system. Authentication of
the customer and the Retail Bookstore is performed as
described above and if successful the third party authenticator
retrieves the data container associated with the Retail Book-
store/customer pair and provides the data container to the
Retail Bookstore. For example, the data container is provided
to the Retail Bookstore’s system for display to the retail
associate with the point-of-sale terminal. As such the identity
of the customer, billing information, loyalty status, etc. are
available to the retail associate.

Employee Rights to Access Resource Example:

The service provider may choose to trust the A&DDS
management system 204 with storing data associated with a
specific user. Alternatively, in cases where the service pro-
vider already has a large investment in a reliable database and
does not want to redesign its core technologies, it is possible
to store within the dispersed data storage system 216 only
certain pieces of information, such as the service provider’s
local IDS that it associates with the presented user. It should
be understood that this form of data need not necessarily be,
but may be, stored in a dispersed format. This particular
approach can be used to allow employers to authenticate their

US 9,177,169 B2

39

employees and provide access to secure corporate resources.
The employer/corporate entity is considered the service pro-
vider and the employee is the user. The employee can use the
same token 27 at work that the employee uses for other
service providers (e.g., on-line retailers). If the employee
does not already have a token, then one can be provided. The
token can be used to gain access to secure areas (e.g., to gain
access to the building, restricted floors, etc.) and to log-in to
the corporate network.

When the user plugs (or otherwise interfaces) the token
into her work computer, the authentication process described
above is performed. The data container identifier, which is
derived using the user ID assigned to the employee and the
service provider ID of the employer, is used to retrieve from
the A&DDS system of the third party authenticator the
employee’s local ID for the employer’s system. The employ-
er’s system has built-in authorization procedures it follows to
determine what resources this employee can access.

The employer benefits in a number of ways. For example,
assuming the employee also uses the token in the employee’s
personal life (e.g., in on-line and point of sale transactions),
the token has more value for the employee than a typical
corporate access device (e.g., key fob). The employee, there-
fore, will be careful not to leave the token connected to his or
her computer during lunch, etc. Moreover, to the extent the
employee already has a token, there is no cost to the employer
for supplying the token. There is also no need to return the
token when the employee departs the company since there is
nothing on the token itself concerning the employer. When
the employee leaves the company, the system administrator
simply changes the authority level associated with the
employee’s internal ID. No changes in the data stored by the
A&DDS management system 204 are required to effectively
lock the employee out.

While the data storage aspects of the system have been
described above principally in connection with safe storage of
private data, it should be understood that the system is not so
limited. Rather, the system can used to store, and provide
authentication services in connection with, any protected
resource. The resource may be a software application, an
object or place, a document, a webpage, a file, executable
code, or other computational resource, communication-type
resource, etc. that is only accessed or retrieved if the user and
service provider are both authenticated. Possible applications
of the technology described herein also include, but are not
limited to:

use of Internet resources;

authorization for use of software programs or hardware
(e.g., to get an access to a program, or to special features, as
a service);

loyalty cards and other customer identification means in
stores, restaurants, etc.;

transport cards (e.g., public transit, ski lifts, etc.);

use of safe storage of credit/debit cards account informa-
tion and/or facilitating secure Internet payment or other
secure financial transaction (e.g., brokerage transaction);

secure access identification systems for entrance to build-
ings, logging into work, and the like;

post-financial transaction transactions, such as a proxy for
boarding passes, e-badges, tickets (e.g., movie or concert
tickets);

personal healthcare information management and access;

integration of the backend storage system with existing
authentication and identification systems;

secure and anonymous electronic elections, voting, etc.;

centralized documents storage for driver’s license and
other personal data;

40

45

50

40

digital signature and security certificates;

authorization for micropayments, pay-as-you-go, or pay-
per-use;

user-to-user connections, e.g., business cards exchange;

billing systems, such as precise, up to the second registra-
tion of a service provider (e.g., attorney) time dedicated to a
particular user’s matter;

e-mail spam elimination, meaning only authenticated enti-
ties (service providers or customers) can send email messages
to other authenticated entities;

authentication at corporate networks and workstations;
and,

storage of mail certificates which allow a user to use a mail
agent (e.g., Mozilla Thunderbird™ agent or Microsoft Out-
look®) on any computer.

Token Management

As noted above in relation to FIG. 13, a token owner (e.g.,
a natural person, machine, or application within a machine
acting as a user or a service provider) employs a token man-
agement service (e.g., Key Management engine 212) to gen-
erate new tokens, register the new tokens, activate tokens,
deactivate tokens, and replace tokens. In some examples, a
token owner accesses the token management service via a
web application (e.g., by accessing a secure website). Using
the token management service, a token owner can manage the
tokens associated with his/her account.

FIG. 15 depicts an overview of an exemplary token life-
cycle. The lifecycle of a token begins with a blank token 300.
The blank token 300 may or may not have firmware loaded
thereon. A token owner cannot use the blank token for authen-
tication or to access information. Rather, a blank token 300 is
a device that can become an active token if the correct infor-
mation is loaded onto the token.

As described in more detail to follow, a blank token 300 can
be transformed (302) into an inactive token 304. An inactive
token 304 is a token that has been individualized and associ-
ated with a particular token owner. To individualize a blank
token 300 a token ID 306 and token encryption key 307, plus
optional encryption algorithm identifier, is assigned to the
token. The token ID 306 is a token specific parameter that
identifies the token as described herein. To associate the token
with an owner, a user ID 308 and data encryption keys 310,
and optionally encryption algorithm identifier (not shown)
are stored in the token (e.g., using one or more of the pro-
cesses described herein). The token can store a token encryp-
tion key and a user encryption key. The token encryption key
is specific to the token, the user encryption key is specific to
the user associated with the user ID (collectively the encryp-
tion keys 310). The user ID 308, data encryption key 310, and
encryption algorithm identifier are user-specific codes asso-
ciated with the particular token owner.

While an inactive token has the token ID 306, user ID 308
and encryption keys 310 stored on the token, the token cannot
be used to authenticate the token owner or to enable the token
owner to enter a transaction (e.g., such as accessing stored
information). In order to activate an inactive token (e.g., as
shown in arrow 312), a token owner presents the inactive
token 304 (with the stored token ID 306, user ID 308 and
encryption keys 310) and provides a passcode to verify the
authenticity of the token owner. The passcode can be a pass-
code assigned to or created by the token owner when the
owner creates its first token. As such, the passcode serves to
verify that the individual requesting activation of the inactive
token 304 is the individual associated with the user ID stored
on the token. Requiring that the token owner enter a previ-
ously-defined passcode prevents a person not associated with
the User ID who comes into possession of an inactive token

US 9,177,169 B2

41

from activating and using the token. Upon verification of the
passcode, the inactive token 304 is activated and becomes an
active token 314. As described herein, the active token 314
can be used to authenticate the token owner and to enable the
token owner to enter various types of transactions.

In some situations, a token owner may desire to disable an
active token 314. For example, if the token owner loses the
token, the token is stolen, or the token is otherwise no longer
securely in the token owner’s possession, the token owner
may desire to prevent use of the token. In order to prevent an
active token from being used, a token owner can disable a
token (e.g., as shown in arrow 316). A disabled token is
considered to be a Blank token 300. While a blank token
resulting from the deactivation of an active token, may have a
token ID, user 1D, and encryption keys stored on the token,
the deactivated token cannot be used for any form of authen-
tication. In some embodiments, a disabled token may be
reused by overwriting existing information with a new token
1D, user ID, and encryption keys as described above.

While in the example above after deactivation a deactivated
token can be overwritten and re-used, the ability to overwrite
a token’s contents can depend on whether the chip was
“locked” after the initial load of firmware, IDs and encryption
keys. Locking the chip can improve security. If locked and
disabled, the token could not be reactivated.

Activating an Inactive Token

FIG. 16 depicts an overview of a data flow for activating an
inactive token. As noted above, an inactive token has a token
1D, user ID, and encryption keys stored thereon, but is not
active in the system and therefore cannot be used for authen-
tication or to enter a transaction. The activation process
begins with a token owner 325 in possession of an inactive
token (e.g., token 326). The token owner 325 submits a
request to a token management service 324 to activate the
token 326 (arrow 328). Upon receiving the request, the token
management service 324 sends a request to an authentication
service 320 to authenticate the token (arrow 330) with two
factors—token authentication and passcode authentication.
The authentication service 320 performs an authentication
process to authenticate the token (arrow 332). During the
authentication, the authentication service 320 requests that
the token owner 325 enter his previously-assigned passcode.
The token owner 325 enters his passcode and the passcode is
transmitted to the authentication service 320. The authenti-
cation service verifies the passcode is correct (e.g., based on
a comparison of the entered passcode and a stored passcode
associated with auser ID for the token owner). Ifthe passcode
is correct, the authentication service activates the token (e.g.,
based on a comparison of the entered passcode and a stored
passcode associated with a user ID for the token owner) and
provides an indication to the token management service 324
that the authentication of the token was successful (arrow
336). The token management service 324 provides an indica-
tion to the token owner 325 that the activation of the token was
successful and that the token is now active and can be used for
authentication (arrow 338).

As seen in the process above, to increase the security of the
system, the passcode is communicated only to the authenti-
cation service 320 and not to the token management service
324. By communicating the passcode to only the authentica-
tion service 320, the token owner’s passcode can be protected
and other entities will not be able to access a token owner’s
passcode.

In some embodiments, the passcode may be further pro-
tected by the authentication service by additional methods
such as the following. The passcode entered by the user can be
encrypted (e.g., within the token using the user encryption

10

15

20

25

30

35

40

45

50

55

60

65

42

key and algorithm) and is provided to the authentication ser-
vice only in this encrypted form. The authentication service
compares the received encrypted passcode with a copy pre-
viously saved by the authentication service. This copy resides
in the distributed secure storage in a data container located by
an access code formed from the user ID and the authentication
service’s service provider ID. In another exemplary embodi-
ment, the passcode may be handled and verified in accor-
dance with Secure Remote Password (SRP-6) protocols such
as those specified in IEE RFC 5054. Theft of the passcode by,
for example, a key logger, video camera, or observer at a
human owner’s personal computer is of reduced utility as the
thief cannot encrypt the passcode without the token. The
authentication service lacks a list of passcodes (which would
be more attractive to a thief) as each passcode is stored indi-
vidually in a data container accessible only when the token is
present at the token owner’s machine. Additionally, the
authentication service never receives/stores an unencrypted
version of the passcode, nor does it hold the decryption key.

In some additional embodiments, the passcode entry can
occur only on the token; e.g., by a human user via a keyboard
on the token such as a keyboard integrated into a mobile
telephone. This embodiment prevents theft of a passcode via
a keystroke logger on the human user’s personal computer.

FIG. 17 shows a flow chart of an exemplary token activa-
tion process. The process begins with a token owner request-
ing to activate a token (block 337). For example, the token
owner can navigate a web browser to a website of a token
management service and select an option to activate a token.
An exemplary user interface for selecting to activate a token
is shown, for example, in FIG. 18. As seen in the example of
FIG. 18, a token owner can begin the token creation process
by selecting the link labeled “Make a Key”. The token man-
agement service receives the request for authentication and
activation of the token (block 338) and sends a request for
two-factor authentication to an authentication service (block
340). The token management service sends the request to the
authentication service rather than performing the authentica-
tion itself to protect the secrecy of the information stored on
the token and the token owner’s passcode which are used to
activate the token.

In exemplary embodiments, the authentication service is
separated from the token management service such that all
requests for authentication, regardless of source (e.g., token
management service, private secure storage service, and any
other applications/service providers) are processed by the
authentication service. Processing all authentication requests
by a single authentication service is believed to provide vari-
ous advantages. For example, presenting a single man-ma-
chine interface to human users can reduce the confusion and
training that might otherwise occur if, for example, a multi-
plicity of applications were used an a variety of approaches
were used to interrogate the user for the passcode. A central-
ized authentication service can re-verify that the application/
service requesting the authentication of its counterparty is
registered and entitled to obtain authentications; e.g., it not a
phishing attack on the counterparty and had not fallen into
arrears for paying for authentication services, etc. A central-
ized authentication service can also provide to the counter-
party a suitable representation of the registered and verified
identify of the application/service requesting the authentica-
tion e.g., via a man-machine interface or application pro-
grammatic interface.

The authentication service receives the request for two-
factor authentication of the token (block 342) and sends a
request to the token owner to present their token for authen-
tication (block 344). As noted above, an inactive token

US 9,177,169 B2

43

already contains the token ID, token encryption key, User ID,
and data encryption key, optionally together with encryption
algorithm identifiers. The token owner receives the request
for presentation of the token (block 346). For example, a user
interface can be displayed to the token owner with a message
requesting presentation of the token, e.g., “Token Manager
wants to activate your token. Please present your token now if
you wish to continue” An exemplary user interface for
requesting presentation of the token by the user is shown, for
example, in FIG. 19. As seen in the example of FIG. 19, the
request for presentation of the token can include an indication
of what service provider is requesting for the token owner to
present their token—in this example, the token management
service (e.g., key services).

In response to the request from the authentication service,
the token owner presents the token (block 348). For example,
the token owner can place the token on a contactless interface
or can connect the token to the Internet via a contact-based
interface.

Upon presentation of the inactive token by the token owner,
the authentication service authenticates the inactive token
(block 350). During the authentication process certain infor-
mation is exchanged between the token and the authentication
service to verify the identity and authenticity of both the token
and the authentication service. Exemplary authentication
processes are described herein.

Upon successful authentication of the inactive token by the
authentication service, the authentication service requests a
passcode from the token owner (block 352). The token owner
receives the request for their passcode (block 354) and pro-
vides the passcode to the authentication service (block 356).
For example, the authentication service can request the pass-
code by presenting a user interface to the token owner with a
message requesting that the token owner enter his/her pass-
code, e.g., “To activate your token enter your passcode.” An
exemplary user interface for requesting entry of a passcode is
shown, for example, in FIG. 20. As seen in the example of
FIG. 20, the request for the passcode can include a user entry
mechanism where the token owner can type the passcode.
While in this example the passcode is entered via a user
interface, other passcode entry methods can be used. For
example, the passcode can be entered on a mobile device
containing the token. In such examples, the request for the
passcode is forwarded to the mobile device. The mobile
device displays the message to the human user; e.g., “Token
Manager wants to activate your token. Please enter your pass-
code.” The human owner enters the passcode on the mobile
device’s keyboard.

The authentication service verifies the passcode (block
358). For example, the passcode can be stored in a secure data
storage location accessible to the authentication service based
on an access code generated from the combination of an
identification code associated with the authentication service
combined with the user ID associated with the token. As such,
the passcode is accessible to the authentication service only
after successful authentication of the token (after which the
authentication service receives the user ID from the token).
The authentication service compares the passcode received
from the token owner to the stored passcode to verify that the
received passcode is correct. If the passcode is not correct, the
authentication service can abort the token activation process
or request that the token owner reenter their passcode.

In some exemplary embodiments, repeated unsuccessful
passcode entries (e.g., three consecutive failed attempts
within five minutes) may trigger temporary or permanent
disablement of the token.

10

15

20

25

30

35

40

45

50

55

60

65

44

After successful verification of the token owner’s pass-
code, the authentication service activates that token by updat-
ing privileges associated with the token (block 360). As noted
above, the token’s state are checked during the token authen-
tication process prior to authenticating a token. As such, by
updating the token privileges the token can then be used for
authentication. The token state can be stored in a secure data
storage location accessible to the authentication service based
on an access code generated from the combination of an
identification code associated with the authentication service
combined with the user ID associated with the token.

After successful activation of the token, the authentication
service sends a message to the token management system
indicating that the token has been successfully authenticated
(block 362) and the token management system receives the
message from the authentication service (block 364). The
token management system sends a message to the token
owner regarding the successful activation of the token (block
366). For example, the token management system can present
auser interface to the token owner with a message indicating
that the token activation was successful. An exemplary user
interface is shown, for example, in FIG. 21.

Such an activation process which relies on the combination
of successful authentication of an inactive token and entry of
a passcode by a token owner can provide one or more of the
following advantages. An inactive token may be created in
one location (e.g., by the holder of a recovery key) and sent to
the owner at another location; e.g., by courier, post or package
delivery service. If the inactive token is stolen during transit,
it is useless to the thief without the corresponding passcode.

The use of a passcode, a representation of an arbitrary
binary number in a form convenient to the owner, avoids the
use and storage of owner-specific personal data (e.g., name,
mother’s maiden name, favorite color, or other similar so-
called security questions and answers) in the activation pro-
cess. This preserves the anonymity of the owner to the authen-
tication service operator.

As the passcode is already known to the user from its usage
in the course of ordinary authenticated transactions with a
variety of applications and service providers, the creation and
activation of areplacement token delivery need not be accom-
panied by a parallel delivery of a one-time activation code.

An inactive token may also be activated by the authentica-
tion service during the owner’s ordinary course of business
with applications/services (e.g., service providers). In this
embodiment, the owner begins a transaction with any service
provider employing the authentication service. During the
transaction the service provider requests authentication of its
user (either 1-factor or more than one factor). The authenti-
cation service, having now authenticated the token, notes that
the token is an inactive token. Even if the service provider
requested only one-factor authentication (e.g., just the pre-
sentation of an active token), the authentication service
requests the passcode. In some applications, the owner and to
token may be at a device unable to accept a passcode (e.g., a
door lock token reader). In such applications, the token must
be activated prior to its use.

Use of Recovery Keys to Replace Tokens

As described above, during the lifecycle of a token, a blank
is transformed into an inactive token by loading firmware
onto the token and storing on the token a token 1D, user ID,
and two encryption keys and encryption algorithm identifiers
(for the token and for data) on the token. In an exemplary
embodiment, the token ID and token encryption key are cre-
ated by the firmware within the token, immediately after the
firmware has been stored in the token. The user ID and data
encryption key, however, must be the same for all tokens

US 9,177,169 B2

45

employed by the same user. For simplicity, the combination
of the user ID, data encryption key, and optional encryption
algorithm identifier is referred to herein as the “payload.”
However, in order to store the payload on a token, the authen-
tication system must first know which user ID and data
encryption keys to associate with the blank token. In some
examples, in order to enable a token owner to generate new
(e.g., duplicate or replacement) tokens using their associated
payload, a token owner is provided with one or more recovery
keys. The recovery key includes a stored copy of the payload
for a particular token owner and can be used to authenticate
the token owner and transfer the payload to a blank token to
form an inactive token. While the recovery key includes the
payload for a user, it cannot be used to authenticate the token
owner for entering into a transaction or accessing data other
than for token management activities. The purposes of the
recovery key are to provide procedures by which the owner
can disable and replace tokens or recovery keys and can
replace a forgotten passcode.

In another exemplary embodiment, the recovery key does
not contain the payload. Rather the recovery key contains a
different user 1D and different data encryption key/algorithm
identifier. In this way, the recovery key can never be used to
authenticate ordinary transactions (e.g., transactions not used
for token management) nor to access data associated with
such transactions because its user ID differs from the token
owner’s user ID. The recovery key’s user ID combined with
the token management service provider IS form an access
code used to retrieve a data container containing information
including the payload. This data container may be encrypted
with the recovery key’s data encryption key and algorithm.

In yet another exemplary embodiment, the recovery key
contains the differing user ID and data encryption key/algo-
rithm identifier described above so as to prevent its use for
ordinary transactions. The recovery key also holds the pay-
load and this payload may be encrypted with a randomly-
generated encryption key “X” used only for this purpose. The
key “X” and encryption algorithm identifier is stored in a data
container (which may be encrypted with the recovery key’s
data encryption key/algorithm), with this data container’s
location determined by an access code formed from the com-
bination of the recovery key’s user ID, the token management
service provider ID, and optionally additional factors.

Variations of the above employ authentication service pro-
vider ID instead of or in addition to the token management
service provider ID to form the access code for the data
container(s) involved in obtaining the payload. More gener-
ally, the partition of functions between token management
service and authentication service provide convenience for
implementation and for the realization of alternate or third-
party token management utilities; however unified imple-
mentation s integrating token management and authentica-
tion services into a single service provider with one service
provider ID represent another potential implementation.

More particularly these procedures allow an owner to
undertake these actions on his own, anonymously and with-
out the knowledge or assistance of the system operators.
Furthermore, because the owner’s data is never accessible
with a recovery key, these procedures may be executed by a
trusted representative of the token owner (e.g., a recovery
agent) such as a friend, lawyer, or third party organization
providing recovery services.

To activate a blank token (e.g., a token that does not include
previously stored User ID and encryption keys), a recovery
key is presented. In one example, the recovery key allows
access to a data container holding the payload (e.g., holding
the User ID and encryption keys and encryption algorithm

10

20

25

30

35

40

45

50

55

60

65

46

identifier). In another example, the recovery key includes
stored information about the payloads. Presentation of the
recovery key enables the system to transfer the payload to the
token to be activated (e.g., the blank token). After the payload
has been stored on the token to be activated, the token owner
provides a passcode. The system verifies the passcode, and if
the passcode is correct, activates the token. As such, the
combination of a recovery key and the passcode can be used
to generate an active token from a blank token.

More particularly, FIG. 22 show a process for generating
an active token based on the presentation of a recovery key
and entry of a passcode. The process described in relation to
FIG. 22 assumes that the token owner who has the token to be
activated also has a copy of his/her recovery key (e.g., the
token owner is in possession of the recovery key and the token
to be activated such that the two tokens are in the same
location). In exemplary embodiments, multiple recovery keys
may exist for a particular user, each one of which has its own
unique recovery key ID and recovery key encryption key. The
user or recovery agent may employ any one of the recovery
keys to create an inactive token from a blank token.

The process includes a token owner requesting generation
of'a replacement token (e.g., generation of a new token that is
active within the system and can be used for authentication)
(400). The token owner can desire to generate a new active
token for a variety of reasons. For example, the token owner
can want to have an extra copy of his/her token to keep in a
separate location or the token owner may have lost his/her
active token and need a new active token to replace the token
that was lost. The token owner can request to begin the pro-
cess of generating a new token in various manners, for
example, the token owner can start a web based application
(e.g., a token management service application). The web
based application can include a user interface with the option
to select “I lost a token™ or equivalent procedure. By selecting
such an option, the token owner can begin the replacement
token generation process.

Upon initiation of the replacement token generation pro-
cess, the token management service receives the request for
the replacement token (401) and sends a request to an authen-
tication service to perform a one-factor authentication of a
recovery key (402). The authentication service receives the
request to perform a one-factor authentication of the recovery
key (403). In general, the one-factor authentication can be
based on a single confirmation. In this case, the one-factor
authentication is based on something that the token owner has
in his/her possession, more particularly, the recovery key. As
described in more detail to follow, the one-factor authentica-
tion does not complete the token generation process. Rather,
in subsequent portions of the token generation process, the
token owner must provide additional factors for authentica-
tion.

In this example, the one-factor authentication is based on
the token owner’s presentation of his/her recovery key and the
process involves the authentication service requesting for the
token owner to present his/her recovery key (404). The
request for presentation of the recovery key can include an
indication of what service provider is requesting for the token
owner to present their recovery key—in this example, the
token management service and the purpose of the authenti-
cation (e.g., to create a replacement token). In response to the
request from the authentication service, the token owner pre-
sents the recovery key (405). For example, the token owner
can place the recovery key on a contactless interface or can
connect the recovery key to the Internet via a contact-based
interface.

US 9,177,169 B2

47

The authentication service authenticates the recovery key
(406). For example, the authentication service checks that the
device provided by the token owner is a recovery key and that
this recovery key is still considered active (e.g., had not been
disabled by the user). If so, the authentication service reports
successful authentication to the token management service
(407). A data container from the distributed data storage
associated with the one-way obfuscation of User ID+token
manager service provider ID is also delivered to token man-
ager. The data container includes the payload or, in some
embodiments, information needed to transfer the payload to
the newly-created token.

After the token owner has successfully authenticated their
recovery key, the replacement token generation process con-
tinues by creating a replacement token.

The authentication service prompts the token owner to
present a blank token (405). The request for presentation of
the blank token can include an indication of what service
provider is requesting the token owner to present the blank
token and what operation is being performed. The token
owner removes his/her recovery key (if still present in reader)
and provides a blank token (408). The authentication service
checks that the device provided by the token owner is a blank.
If so, the authentication service loads firmware (if needed),
loads the user 1D, and loads the encryption keys (409, 410).
The authentication service can optionally verify that each of
the loads worked correctly and mark the token ID as inactive
but ready to activate (412). In this state the token has been
associated with its owner via the token owner’s User ID and
encryption keys, but cannot be used for authentication pur-
poses because it has not been activated.

In some embodiments, the memory of the user equipment
to which the recovery key or token is connected may not be
trusted. In one example of methods used to protect the trans-
fer of the payload through untrusted user equipment into the
blank token, the payload remains encrypted while in the user
equipment. During the operations, the token generates a ran-
dom one-time asymmetric key pair and transmits the public
key of the pair to the device holding the payload (e.g., recov-
ery key, token management service or authentication service),
which encrypts the payload with this public key and transmits
the encrypted payload into the token. The token decrypts the
payload with the private key.

The authentication service reports the successful result
(e.g., that the inactive token was generated successfully) to
the token management service (414). In response, the token
management service requests that the authentication service
perform a two-factor authentication process to activate the
inactive token. In some examples, a three-factor or four-factor
authentication process could be used instead of a 2-factor
authentication process. The authentication service authenti-
cates the token management service and displays a message
to the token owner to prompt the token owner to provide their
inactive token and passcode and waits for token owner to
provide the inactive token (if not still in reader) and passcode
(418). For example, authentication service can display a mes-
sage of “Blank token successfully prepared. Please provide
this token and your passcode.” The token owner presents the
inactive token and provides the passcode (420). The authen-
tication service authenticates the inactive token and passcode
(422) and, if the combination is correct, marks the inactive
token as active (424). The token can be marked as active by
updating the token’s privileges from inactive to active. The
authentication service reports to the token management ser-
vice that the token generation and activation was successful
(426) and the token management service informs token owner
that the new token is now ready for use (428, 430).

10

15

20

25

30

35

40

45

50

55

60

65

48

In the examples described above, a token owner generated
an active token based on his/her possession of a recovery key
and knowledge of his/her passcode. However, in some
examples, a token owner may desire to generate a new active
token in a situation where he/she does not have physical
access to his/her recovery key. For example, if the token
owner is traveling on vacation in another country and loses
his/her active token, the token owner is unlikely to have
access to his/her recovery key as the user would likely have
left the recovery key in a safe location separate from the active
token. As such, the token owner may desire to generate a new
active token without being able to physically provide the
recovery key from his/her current location. In order to use a
recovery key that is located in a separate location from the
token owner to generate a new active token, in some embodi-
ments the system may use a ticket-based process in which the
authentication and provision of the payload occurs based on a
recovery key presented in a different location from the token
to be activated.

When the recovery key is in a different location from the
token to be activated, the process begins similar to the process
described above with an authorized representative of the
owner who holds a recovery key (e.g., a recovery agent)
requesting that a new token be generated. The token manage-
ment service requests that the recovery key be presented from
a first location (e.g., Location A) and authenticated by the
authentication service. For example, the authentication can
be accomplished using one or more of the processes
described above. Upon completion of the authentication, the
token management service generates a ticket that includes a
protected representation (e.g., encrypted with a one-time key)
of the payload or protected representation of its one-time
temporary location. The ticket is also associated with a one-
time code that can be used to identify the ticket. The token
management service sends the one-time code identifying the
ticket to the recovery agent at location A. The one time code
can be a string of numbers and/or characters used to identify
the ticket. The recovery agent at location A communicates the
one-time code to the token owner at a second location sepa-
rate from the first location (e.g., Location B). This commu-
nication can be in various forms including by telephone, text
message, e-mail, etc. For additional security the ticket and its
identifier may have a limited time window (start and finish
time) during which it can be used.

The token owner at location B provides the one time code
and his/her passcode to the authentication service. In
response, the token management service (in conjunction with
the authentication service), creates an inactive token and acti-
vates the inactive token. More particularly, to create the inac-
tive token, the token management service retrieves the ticket
identified by the one-time code and can thereby obtain or
instruct the authentication service to obtain the payload. As
such, when the token owner at location B receives the one
time code, the token owner can then gain access to the stored
information in the ticket. By passing a one-time code between
the holder of the recovery key (e.g., the recovery agent at
location A) and the user attempting to generate a new token
(e.g., the token owner at location B), the sensitive information
of'the user ID and the data encryption key/algorithm identifier
does not have to be transferred outside of the tokens and the
authentication service.

Disabling a Token

As shown in FIG. 23, the process includes a token owner
requesting to disable a token (380). The token owner can
desire to disable a token for a variety of reasons. For example,
the token owner may have lost the token, or the token hard-
ware may have become defective. Upon initiation of the token

US 9,177,169 B2

49

disablement process, the token management service receives
the request to disable a token (382) and sends a request to an
authentication service to perform a two-factor authentication
of a recovery key and passcode (384). The authentication
service receives the request to perform a two-factor authen-
tication of the recovery key and passcode (386). In general,
the two-factor authentication can be based on two confirma-
tions. In this case, the two-factor authentication is based on
something that the token owner has in his/her possession,
more particularly, the recovery key and something an owner
knows, e.g., the passcode.

In this example, the two-factor authentication is based on
the token owner’s presentation of his/her recovery key and
entry of the passcode and the process involves the authenti-
cation service requesting for the token owner to present his/
her recovery key and enter his’/her passcode (388). In
response to the request from the authentication service, the
token owner presents the recovery key and enters the pass-
code (390).

The authentication service authenticates the recovery key
(392). For example, the authentication service checks that the
device provided by the token owner is a recovery key. If so,
the authentication service reports successful authenticationto
the token management service (394). The authentication ser-
vice also verifies that the passcode is correct.

After successful two-factor authentication, the token man-
ger presents dialog to token owner via a user interface, listing
the token owner’s tokens (396). If desired, based on the pre-
sented list of tokens, the token owner selects a token to disable
(397). For example, the token owner may desire to deactivate
or disable a token that has been lost or is in the possession of
someone that the token owner does not wish to have access.
The token management service receives the selection of the
token to disable and sends an indication to the authentication
service to disable to selected token (398). The authentication
service records appropriate information to disable the token
(399). For example, the authentication service can modify a
status of the token from active to disabled.

In another example, a data container identified by an access
code formed from the combination of token ID and authen-
tication service provider ID is destroyed. As this data con-
tainer holds an encryption key and algorithm identifier
needed to establish communications between the token and
the authentication service, the token is disabled. Ifthe token’s
memory was locked when it was created, the token becomes
permanently useless for authentication as it cannot create and
retain a new key.

In some implementations, a token may be disabled using a
single factor authentication. For example, a token (either a
normal token or recovery key) may be disabled upon the
presentation of a valid recovery key.

Use of Recovery Key to Generate Additional Recovery
Keys

A token owner may possess multiple recovery keys which
are isomorphic, e.g., possess equal powers. Any one of these
isomorphic recovery keys with proper authentication, may be
used to disable another recovery key and to create an inactive
or active recovery key.

In one exemplary embodiment, isomorphism is realized by
creating all recovery keys to include identical payloads. As
explained herein, some exemplary embodiments set the
recovery key user ID equal to the owner’s user ID (as stored
on the token owner’s active token) and similarly employ
identical data encryption keys. Other exemplary embodi-
ments employ a recovery key user ID and data encryption
keys that differ from that employed by the owner’s active
tokens.

10

15

20

25

30

35

40

45

50

55

60

65

50

To individualize these recovery keys, each contains its own
unique token ID and token encryption key/algorithm identi-
fier.

For example, following procedures similar to those
described above for replacing a token, a user of the token
management service creates an inactive recovery key from a
blank token by authenticating with another recovery key. The
inactive recovery key is activated by authenticating it with the
owner’s passcode.

In another example, following procedures similar to those
above for replacing a token when the owner is at another
location distant from any recovery key, a recovery agent
holding one recovery key uses the token management service
to create a ticket enabling the remote creation a of a new
recovery key from a blank token. The owner, upon receipt of
the one-time code identifying the ticket, uses the token man-
agement service to authenticate the ticket identifier and own-
er’s passcode and thereafter create an active recovery key
from a blank token.

In a further example, following procedures analogous to
those described above for disabling a token, a user of token
management service disables one or more recovery key(s)
(active or inactive) by authenticating with another recovery
key and the owner’s passcode. Exceptionally, the system
should not allow the last recovery key (i.e., the one just now
used to authenticate) to be disabled. Disabling the last recov-
ery key will prevent the user from performing most token/
passcode management actions in future.

In a further example, following procedures similar to those
described above for disabling a token when the owner is at a
location distant from any recovery key, a recovery agent
holding one recovery key uses token management service to
create a ticket enabling remote disabling of recovery keys.
The owner upon receipt of the one-time code identifying the
ticket, uses token management service to authenticate the
ticket identifier and owner’s passcode and thereafter disables
one or more recovery key(s) (active or inactive). In another
example, the system may accept just one authentication factor
(an active recovery key) to disable the same or a different
recovery key. In this case a recovery agent may disable any
recovery key (except the last surviving active recovery key)
without creating a ticket.

The passcode associated with the recovery key can be the
same as the passcode associated with an active token or can
differ from the passcode associated with the active token.

Passcode Recovery

In some situations, a token owner may forget his/her pass-
code or desire to be assigned or to choose a new passcode. In
general, the passcode is a binary code assigned by the authen-
tication service. For the convenience of human owners the
passcode can be represented as, for example, a string of
alphanumeric characters, e.g., “73DeK3Na”. Assigning the
passcode selected by the authentication system (e.g., as
opposed to allowing the token owner to select his’her own
passcode) is believed to increase the security of the passcode
because the token owner is unable to select a common pass-
word that he/she uses to access other systems or a password
that is easily determined or guessed; e.g., on knowledge of the
token owner, based on dictionary attacks, etc. However,
embodiments may additionally or alternatively permit owner-
selected passcodes. Thus, assignment of a passcode herein
can also include selection of a passcode by the token owner.

Passcodes may be stored by a variety of methods. For
example, the passcode may be stored in a data container
whose location is determined based on an access code formed
by the combination of a token user 1D, authentication service
provider ID, and optionally other factors.

US 9,177,169 B2

51

The representation of the passcode in storage may be
obfuscated for further security. For example, obfuscation may
be performed by a one-way function (e.g., hash algorithm)
executed by the authentication service.

Referring to FIG. 24, in order to be assigned a new pass-
code or to receive a previously assigned passcode, a token
owner presents both an active token 479 and a recovery key
478. The active token 479 and recovery key 478 are both
authenticated by an authentication service 495. Upon suc-
cessful authentication of both the active token 479 and recov-
ery key 478, the authentication service 495 assigns a new
passcode 476 to the token owner’s account. The authentica-
tion service transmits the passcode to the token management
service 477 which, in turn, provides the passcode 476 to the
user 480, for example, during the user’s secure web session
with the token management service.

In another exemplary embodiment, the passcode is created
within the token upon instruction by the authentication ser-
vice after authentication of the active token 479 and recovery
key 478. A plain or obfuscated version of the passcode is
provided to the authentication service for storage. When at
any later time, the user is asked for his passcode, the user’s
response s entered directly on the token. The token obfuscates
the passcode if required and transmits the (obfuscated) pass-
code to the authentication service via a secure channel (e.g.,
encrypted with one-time keys). The obfuscation algorithm
may, for example, include either or both of a one-way func-
tion and an encryption using, e.g., an asymmetric key pairand
associated algorithm of which one key and the algorithm’s
identity was provided to the authentication service for storage
at the time the passcode was generated. In such an example,
the authentication service decrypts the received encrypted/
obfuscated passcode using the identified algorithm and key
from storage and compared the result with the stored obfus-
cated passcode. When additional/replacement tokens are cre-
ated, the obfuscation method and parameters and the token’s
passcode encryption key and algorithm are included in the
payload. In such examples, the user’s form of the passcode is
never displayed nor entered nor directly represented on any
device except the token and the token never retains the pass-
code in any form in long term storage.

In another implementation, a user may request that the
token management service change or retrieve a passcode, for
example, by accessing a website associated with the token
management service. The token management service may
request that the authentication service perform a one-factor
authentication of an active recovery key. The token manage-
ment service may request that the authentication service per-
form a one-factor authentication of an active token. If the
owner of the active recovery key and the owner of the active
token match (e.g. resolve to the same user) then the token
management service may either assign a new passcode or
permit the user to select a new passcode. In some implemen-
tations, the token management system limits the passcodes
that the user may select. For example, a passcode may need to
be of sufficient length and complexity, may not include com-
mon words, etc.

FIG. 25 shows a flow diagram of an exemplary process for
providing a passcode to a token owner based on the token
owner’s presentation of both an active token and a recovery
key. The token owner navigates to token management service
and requests that the service provide his/her passcode (481).
The token management service receives the request for pass-
code (482) and sends a request for authentication of a token
owner’s recovery key and active token to the authentication
service (483).

10

15

20

25

30

35

40

45

50

55

60

65

52

The authentication service requests that the token owner
present his/her recovery key (484). In response to the request,
the token owner provides his/her recovery key (485) and the
authentication service authenticates the recovery key, e.g.,
using one or more of the authentication processes described
herein (486). The authentication service requests that the
token owner present his/her active token (487). In response to
the request, the token owner provides his/her active token
(488) and the authentication service authenticates the active
token, e.g., using one or more of the authentication processes
described herein (489).

After successful authentication of both the token owner’s
recovery key and active token, the token management service
creates a new passcode (490) and provides the passcode to the
token owner (491) and the token owner receives a new pass-
code (492).

Passcode recovery may also occur even if the owner is
distant from the recovery key. For example, using procedures
similar to those described herein for other token management
tasks involving distance recovery keys, a recovery agent hold-
ing a recovery key uses the token management service to
create a ticket enabling the passcode recovery. The owner,
upon receipt of the one-time code identifying the ticket, users
token management service to authenticate the ticket identifier
and the token and thereafter follows the process to obtain a
new passcode.

Specialized Passcodes

In some embodiments, the token owner may create and
employ specialized passcodes for unique tasks.

For example, the passcode associated with the recovery
key can be the same as the passcode associated with the token
or can differ from the passcode associated with that token. In
the latter case, the recovery key passcode is limited to authen-
ticating token management actions involving the recovery
key (e.g., one-factor authentication or two-factor authentica-
tion of the recovery key to create an inactive token) and it’s
not used as a substitute for the passcode associated with the
active token (e.g., to activate an inactive token).

In another example, the token owner may create a panic
code which, when entered instead of the passcode associated
with the token, temporarily or permanently disables the use of
that token, that recovery key, all tokens or all tokens and
recovery keys. Such panic codes may be used when the threat
of misuse of the token(s), recovery key(s) or data protected
thereby exceeds the short-term or long-term value of the
token(s), recovery key(s) or data.

Such specialized passcodes are generated and stored by the
token management and authentication services using the
same methods employed for ordinary passcodes. When the
authentication service receives a response to a request for the
passcode, the authentication service tests the response against
the stored list of specialized passcodes and performs the
associated specialized action when a match occurs.

Although the invention has been described in terms of
exemplary embodiments, it is not limited thereto. Rather, the
appended claims should be construed broadly to include other
variants and embodiments of the invention that may be made
by those skilled in the art without departing from the scope
and range of equivalents of the invention.

E-Vaults

One exemplary application which can be offered by a ser-
vice provider working in conjunction with an A&DDS sys-
tem is to facilitate service providers to enable vendors to offer
secure digital storage to their customers. Each vendor pro-
vides its users with an e-vault which can store digital data
subject to the restrictions established by the vendor. For
example, the e-vault can store digitized copies of important

US 9,177,169 B2

53

documents (e.g., property titles, wills, trusts, medical records,
account information, tax returns, etc.) and personal docu-
ments (e.g. family photos, home movies, etc.) Because the
A&DDS system redundantly stores data over a wide geo-
graphic area (e.g., using one or more of the methods described
herein), an e-vault provides a user with a secure reliable data
storage area.

Referring to FIG. 26, a service provider 2604 can provide
multiple, separate e-vaults to a user 2602 on behalf of one or
more vendors (e.g., vendors 2606, 2608, and 2610). For
example the user 2602 is provided with separate e-vaults by a
bank 2606, insurance company 2608, and an attorney 2610.
Each e-vault is provided by a single service provider 2604
(e.g., the same service provider can maintain e-vaults for
multiple different vendors). In another embodiment, by mul-
tiple instances of service provider 2604, each instance having
been assigned a different service provider ID, and each
instance capable of providing one or more e-vaults to the user.
In order to access the e-vaults a user 2602 may use a client/
server application running on a personal computer or may
access the vault through a web interface presenting in a
browser over the Internet.

FIG. 27 illustrates an example of a user interface for pre-
senting multiple e-vaults accounts to user in a unified inter-
face. The user interface 2702 presents the user (not shown)
with a single view of all the e-vaults the user has with the
service provider. For example, the user interface 2702
includes a directory hierarchy area 2704 and a directory con-
tents area 2706. The directory hierarchy area 2704 lists a root
directory 2708 and three vaults, a bank vault 2710, insurance
vault 2712, and attorney vault 2714. However, any number of
vaults could be included in the root directory based on the
number of vault services used by the user. In this example,
each vault is displayed as a subdirectory nested under the root
directory 2708. The user interface can be presented as a
separate application or can be integrated into a file browser of
an operating system. The directory hierarchy area also dis-
plays folders created by the user in a particular vault, for
example the personal folder 2716.

The directory contents area 2706 shows a list of contents in
the selected directory including files and subdirectories. In
this example the attorney vault 2714 is selected 2726 in the
directory hierarchy area 2704. For example, a particular vault
can be selected by clicking on a link in the web browser. As a
result the directory contents area 2706 displays the docu-
ments located in the e-vault. In this example, the directory
contents area 2706 displays a trust document 2718, personal
notes 2720, articles of incorporation 2722, and the personal
folder 2716 sub-directory.

In general, each data container in the A&DDS system is
stored independently from other containers. The directory
structure displayed in the directory hierarchy area 2704 and
the list of files stored “within” a directory, for example the
documents shown in the directory contents area 2706, are
built based on relationships between different data containers
stored in the A&DDS system. Where a user interface may
display a directory with a file located inside the directory, the
corresponding directory container is simply related to the
corresponding file container because the directory container
includes a reference to the public file ID of the file container
in its list of IDs.

FIG. 28 illustrates data containers stored in an A&DDS
system and the relationship between data containers. The
service provider maintains a user container 2802 for each
user. The user container 2802 stores information about the
user and is associated with a directory container 2804 which
represents the root directory for the user. The association of

20

30

35

40

45

54

the user container 2802 with the root directory enables the
user to view e-vaults from multiple vendors in a single con-
solidated manner. The user container 2802 is also associated
with one or more e-vault containers 2806.

The root directory container 2804 represents the top of a
directory hierarchy associated with the user.

E-vault containers 2806 store information about the
e-vault’s associated with the user. Generally, a user container
2802 will be associated with one e-vault container 2806 for
each e-vault assigned to the user. Therefore, referring back to
the example of FIG. 26, the user 2502 would have three
e-vault containers associated with his user container, one for
the bank e-vault, one for the insurance e-vault, and one for the
attorney e-vault. Referring again to FIG. 27, e-vault contain-
ers 2806 enable the vendors associated with the e-vaults to
manage and set limits on the use of the e-vault by the user. For
example, an e-vault container 2806 can contain a limit on the
amount of data that a user can store (e.g. 100 megabytes, 1
gigabyte, 2 gigabytes, 10 gigabytes, etc. . . .) or the amount of
data that can be uploaded/downloaded per month (e.g., 2
gigabytes/month, 10 gigabytes/month, etc.).

Each e-vault container 2806 is associated with an e-vault
directory container 2808. Generally, each e-vault directory
container 2808 is associated with one e-vault container 2806
and each e-vault container 2806 is associated with one e-vault
directory container 2808. The e-vault directory container
2808 represents to top of the directory hierarchy for the
e-vault. Each e-vault directory container 2808 is associated
with the root directory container 2804 of the user.

Each e-vault directory container 2808 can be associated
with zero or more user-created directory containers 2810. In
scenarios where a user creates a subdirectory under an e-vault
directory, the system associates the e-vault directory con-
tainer 2808 with a corresponding directory container 2810.
For example, referring to FIG. 27, the user created a sub-
directory named “personal folder” 2716 under the attorney
e-vault 2714 as a consequence the A&DDS system would
create a “personal folder” sub-directory container associated
with the attorney e-vault directory container. The system
allows creation and use multiple layers of such subdirecto-
ries.

In some implementations, the root directory container
2804, the e-vault directory container 2808, and the directory
container 2810 are all of the same data type. That is, all three
types are directory containers. However, as described in more
detail to follow, the role of the directory container depends on
the relationship of the directory container to the other data
containers.

FIG. 29 illustrates data containers used to administer the
e-vaults. A user container is used by the service provider to
store information about the user. For example the user con-
tainer 2902 includes data about the particular user and can
include one or more public user IDs 2916. In general, a public
user ID is used to identify the user while maintaining the
user’s user ID as a secret. The user container 2902 also
includes a root directory ID 2918. The root directory ID
identifies a directory container which represents the root
directory of the user, for example the root directory 2708 of
FIG. 27. The user container 2902 also includes a list of vault
1Ds 2920, each vault ID corresponds to an e-vault container
2904.

The e-vault container 2904 can be used by a vendor to
manage a user’s abilities and access rights with respect to the
e-vault. The vault container 2904 includes the name of the
vendor 2922 who provided the vaults to the user, for example
“Local Bank.” The vault container 2904 also includes a list of
capabilities 2924 of the e-vault. For example, as described

US 9,177,169 B2

55

above, the e-vault container 2904 list of capabilities 2924 can
described the size of the data area allocated to the user.

The data containers associated with the e-vaults also
include administrator containers 2906. Each vendor can be
provided with an administrator container 2906. The admin-
istrator container 2906 contains a list of all of the e-vaults
2926 provided by the vendor for all users.

The data containers also include directory containers 2908,
2910, 2912, for example the root directory container 2908,
the vaults directory containers 2910, and the directory con-
tainers 2912. Each directory container contains a list of iden-
tifiers which identify any subdirectories and files within the
directory. For example the root directory container 2908
includes a list of IDs 2928 which identifies vault directory
containers 2910. Similarly, each e-vault directory container
2910 includes a list of IDs 2930 which identifies directory
containers 2912 and file containers 2914 for the hierarchical
subdirectories and files stored in the e-vault, respectively.
Each e-vault directory container 2910 is associated with an
e-vault container 2904.

The data containers also include file containers. A file
container 2914 describes files stored in the A&DDS system.
The file container 2914 includes information about the file,
such as file attributes 2932 (e.g. creation date, last modified
date, etc.) as well as the file contents 2934. The file contents
can be stored using one or more of the methods described
herein. For example, the file contents can be stored in a
geographically distributed manner.

FIG. 30 illustrates an implementation of an e-vault con-
tainer. In general, an e-vault container is located by a data
container identifier determined by providing an e-vault ID
and a service provider ID to a one-way permutation function
(e.g., using the methods described herein). The e-vault con-
tainer 3000 includes a vendor name 3002. In some implemen-
tations, the vendor name is stored in a human readable format
(e.g. “Local Bank™), in other implementations the vendor
name is a public user ID for the vendor.

The e-vault container 3000 also includes a list of capabili-
ties 3004. The list of capabilities 3004 describes the capabili-
ties and limitations of the e-vault. For example, a maximum
file size 3006, a maximum total size 3008, a maximum num-
ber of files 3010, and an e-vault status 3012.

Generally, the maximum file size 3006 identifies the maxi-
mum number of bytes that any single file can be and be
uploaded to the system. The maximum total size 3008 is the
maximum number of bytes of data the user can store in the
e-vault. The maximum number of files 3010 places a limit on
how many different pieces of data a user can store in the
e-vault. The limits on a maximum file size 3006, a maximum
total size 3008, a maximum number of files 3010 can be set by
the vendor. In some examples, the maximum file size 3006, a
maximum total size 3008, a maximum number of files 3010
allowed by a vendor can vary based on a level of service
purchased by the user.

The e-vault status 3012 identifies a state of the e-vault. An
e-vault can have an “active” status, indicating that the user can
freely add, modify, delete, and access information in the
e-vault. The e-vault can also have an “inactive” status. Gen-
erally, an e-vault with an inactive status cannot be accessed by
the user. In some implementations, a user can still access the
data in an inactive e-vault but cannot modify, delete, or add
new data to the e-vault.

In general, the vendor who provides the e-vault to the user
establishes and can change the capabilities and limitations
3004 of the e-vault. By providing the vendor with the capa-

10

15

20

25

30

35

40

45

50

55

60

65

56

bility to change to status of the e-vault, the vendor can provide
storage services only to customers who continue to pay for the
service.

FIG. 31 illustrates an implementation of a directory con-
tainer. The directory container 3100 describes a collection of
files and directories grouped together in a higher level direc-
tory. The directory container is identified by a location deter-
mined by providing a directory id and a service provider ID to
a one way permutation (e.g., by generating an access code
based on the inputs as described herein).

The directory container 3100 includes an access control list
3102. The access control list identifies the public user ID of
each user who has permission to access the directory. In
general, users can have ownership access (e.g. read and write
privileges) or read access (read only privileges). Other per-
missions can also be granted. For example, a user may have
permission to read files, create new files, but may not have
permission to modify or delete existing files.

The directory container 3102 includes directory attributes
3104. The directory attributes 3104 describe the directory.
For example, the directory attributes 3104 include informa-
tion such as the creation date and time of the directory 3106
and the last modified date and time of the directory 3108.

The directory container 3102 also includes directory con-
tents 3110. In some implementations, the directory contents
3110 include a list of IDs of files and directories stored in the
directory and information about those IDs. For example, the
list of IDs can include a human readable name for the file or
directory 3112, a type for the file or directory 3114 that
identifies whether the ID refers to a file or a directory, a size
of'the file or directory 3116, and a public ID 3118 of the file
and directory.

Information stored in the directory container can be used
by a user device to generate a user interface, for example, the
user interface 2702 of FIG. 27, to construct a graphical rep-
resentation of the e-vaults, directories, and files stored in the
A&DDS system for a particular user.

FIG. 32 illustrates an implementation of a file container.
The file container 3200 includes an access control list 3202.
In this implementation, the access control list 3202 includes,
for each user, a public user ID of the user 3204, a set of
permissions describing how the user may access the file 3206,
and an encrypted file encryption key 3208. The public user ID
3204 identifies each user who can access the file. The set of
permissions 3206 limit how the user can interact with the file.
For example, a user may have read only permissions, which
enables the user to read the file, or read-write permissions,
which allows the user to modity the file.

In some implementations, to enable multiple users to share
access to the same file without forcing the users to share
common user encryption keys, file contents are encrypted
using a filekey. To protect the file key, the file key is encrypted
for each user using the user’s data encryption key. The access
control list 3202 can include the encrypted file key 3208.

The file container 3200 includes file attributes 3210. The
file attributes 3210 describe the file. For example, the file
attributes 3210 include information such as the creation date
and time of the file 3212 and the last modified date and time
of the file 3214.

The file container 3200 also includes the file contents
encrypted using the file key 3216. In order to access the
contents of the file, a user must first decrypt the encrypted file
key using their data encryption key and then decrypt the file
contents using the decrypted file key.

In some implementations, when a new file is created, the
user chooses a desired file name, a desired directory, and
selects a file on the user device to upload to the A&DSS

US 9,177,169 B2

57

system. The user’s token generates a new random file key and
encrypts it with the its data encryption key. The user device
encrypts the uploaded file with the file key using, for example,
a standard encryption algorithm, example e.g., AES-256, and
sends the encrypted file key with the encrypted file to a secure
storage service provider agent. The secure storage service
provider agent creates a new file container and stores the
received encrypted file in the A&DDS SYSTEM. The user’s
public user ID followed by the owner flag and encrypted file
encryption key is added to the access control list in the created
file container. The secure storage service provider agent adds
the name of the file and the public file ID to the directory
container corresponding to the selected directory.

In some implementations, when a user desires to read the
file, the user requests the desired file by the file name from the
directory. The secure storage service provider agent collects
the required public file ID from the associated record in the
list of IDs in the directory container. The secure storage
service provider agent sends the encrypted contents of the file
container and the encrypted file key to the secure storage man
machine interface on the user device. The secure storage man
machine interface decrypts the file key using the user’s data
encryption key and then uses the file key to decrypt the con-
tents of the file and provide them to the user.

In implementations where the directory container is
encrypted, moving and renaming files occurs in a similar
manner. The service provider agent provides the directory to
the user device upon request. The secure storage man
machine interface on the user device decrypts the directory
using a decrypted directory key, makes the necessary
changes, re-encrypts the directory and uploads it to the secure
storage service provider agent for placement into the A&DDS
system.

What is claimed is:

1. A computer-implemented method comprising:

receiving from a user a request to access a secure data

container of a data storage system, the secure data con-
tainer provided by a service provider, and the received
request including an identifier of the user;

receiving from the service provider an identifier of the

service provider;
generating a unique identifier of the secure data container
based on a combination of the received identifier of the
user and the received identifier of the service provider;

identifying a location associated with the secure data con-
tainer based on the generated unique identifier of the
secure data container;

verifying that the secure data container has an active status;

identifying a directory container associated with the secure

data container, the directory container identified based
on a directory container identifier and including a list of
file identifiers associated with files stored in file contain-
ers; and

providing access to the directory container to the user.

2. The method of claim 1, further comprising:

receiving a request from the user to add new data to the

directory container;

comparing the size of data in the secure data container and

the size of the new data to a maximum size of the secure
data container; and

adding the new data to the secure data container in response

to determining that the size of the data in the container
and the new data is less than the maximum size of the
secure data container.

3. The method of claim 2, the adding comprising:

creating a file container, the file container identified in part

by a file identifier;

20

30

35

40

45

55

65

58

generating a file encryption key;
generating encrypted data by encrypting the new datausing
the file encryption key;
storing the encrypted data in the file container in a first part
of the file container;
generating an encrypted file key by encrypting the file key
using an encryption key associated with the user; and
storing the encrypted file key in a second part of the file
container.
4. The method of claim 2, further comprising:
adding the file identifier to the list of file identifiers stored
in the directory container.
5. The method of claim 4, wherein the list of file identifiers
is encrypted using a directory encryption key.
6. The method of claim 1, further comprising:
enabling the service provider to change the status of a
secure data container without being able to decrypt the
file containers associated with the secure data container.
7. The method of claim 6, further comprising:
providing a list of a plurality of secure data containers to a
service provider, the plurality of secure data containers
including the secure data container;
receiving a request from the service provider to change the
status of the secure data container;
identifying the location associated with the secure data
container based on the generated unique identifier; and
changing the status of the secure data container.
8. The method of claim 1, further comprising:
presenting to the user a list of a plurality of secure data
containers associated with the user, each secure data
container provided by different service provider.
9. A system comprising:
one or more computers and one or more storage devices
storing instructions that are operable, when executed by
the one or more computers, to cause the one or more
computers to perform operations comprising:
receiving from a user a request to access a secure data
container of a data storage system, the secure data
container provided by a service provider, and the
received request including an identifier of the user;
receiving from the service provider an identifier of the
service provider;
generating a unique identifier of the secure data con-
tainer based on a combination of the received identi-
fier of the user and the received identifier of the ser-
vice provider;
identifying a location associated with the secure data
container based on the generated unique identifier of
the secure data container;
verifying that the secure data container has an active
status;
identifying a directory container associated with the
secure data container, the directory container identi-
fied based on a directory container identifier and
including a list of file identifiers associated with files
stored in file containers; and
providing access to the directory container to the user.
10. The system of claim 9, wherein the operations further
comprise:
receiving a request from the user to add new data to the
directory container;
comparing the size of data in the secure data container and
the size of the new data to a maximum size of the secure
data container; and

US 9,177,169 B2

59

adding the new data to the secure data container in response
to determining that the size of the data in the container
and the new data is less than the maximum size of the
secure data container.

11. The system of claim 10, the adding comprising:

creating a file container, the file container identified in part

by a file identifier;

generating a file encryption key;

generating encrypted data by encrypting the new data using

the file encryption key;

storing the encrypted data in the file container in a first part

of the file container;

generating an encrypted file key by encrypting the file key

using an encryption key associated with the user; and
storing the encrypted file key in a second part of the file
container.

12. The system of claim 10, wherein the operations further
comprise:

adding the file identifier to the list of file identifiers stored

in the directory container.

13. The system of claim 12, wherein the list of file identi-
fiers is encrypted using a directory encryption key.

14. The system of claim 9, wherein the operations further
comprise:

enabling the service provider to change the status of a

secure data container without being able to decrypt the
file containers associated with the secure data container.

15. The system of claim 14, wherein the operations further
comprise:

providing a list of a plurality of secure data containers to a

service provider, the plurality of secure data containers
including the secure data container;

receiving a request from the service provider to change the

status of the secure data container;

identifying the location associated with the secure data

container based on the generated unique identifier; and
changing the status of the secure data container.

16. The system of claim 9, wherein the operations further
comprise:

presenting to the user a list of a plurality of secure data

containers associated with the user, each secure data
container provided by different service provider.

17. A non-transitory computer storage medium encoded
with computer program instructions that when executed by
one or more computers cause the one or more computers to
perform operations comprising:

receiving from a user a request to access a secure data

container of a data storage system, the secure data con-
tainer provided by a service provider, and the received
request including an identifier of the user;

receiving from the service provider an identifier of the

service provider;
generating a unique identifier of the secure data container
based on a combination of the received identifier of the
user and the received identifier of the service provider;

identifying a location associated with the secure data con-
tainer based on the generated unique identifier of the
secure data container;

verifying that the secure data container has an active status;

15

20

25

30

40

45

55

60

identifying a directory container associated with the secure
data container, the directory container identified based
on a directory container identifier and including a list of
file identifiers associated with files stored in file contain-
ers; and

providing access to the directory container to the user.

18. The medium of claim 17, wherein the operations fur-

ther comprise:

receiving a request from the user to add new data to the
directory container;

comparing the size of data in the secure data container and
the size of the new data to a maximum size of the secure
data container; and

adding the new data to the secure data container in response
to determining that the size of the data in the container
and the new data is less than the maximum size of the
secure data container.

19. The medium of claim 18, the adding comprising:

creating a file container, the file container identified in part
by a file identifier;

generating a file encryption key;

generating encrypted data by encrypting the new datausing
the file encryption key;

storing the encrypted data in the file container in a first part
of the file container;

generating an encrypted file key by encrypting the file key
using an encryption key associated with the user; and

storing the encrypted file key in a second part of the file
container.

20. The medium of claim 18, wherein the operations fur-

ther comprise:

adding the file identifier to the list of file identifiers stored
in the directory container.
21. The medium of claim 20, wherein the list of file iden-

tifiers is encrypted using a directory encryption key.

22. The medium of claim 17, wherein the operations fur-

ther comprise:

enabling the service provider to change the status of a
secure data container without being able to decrypt the
file containers associated with the secure data container.

23. The medium of claim 22, wherein the operations fur-

ther comprise:

providing a list of a plurality of secure data containers to a
service provider, the plurality of secure data containers
including the secure data container;

receiving a request from the service provider to change the
status of the secure data container;

identifying the location associated with the secure data
container based on the generated unique identifier; and

changing the status of the secure data container.

24. The medium of claim 17, wherein the operations fur-

ther comprise:

presenting to the user a list of a plurality of secure data
containers associated with the user, each secure data
container provided by different service provider.

#* #* #* #* #*

